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ABSTRACT

A frequency domain transformation is the basis for a general

approach to the identification of finite element modeling

errors. The transformation provides information as to the

location of modeling errors and provides the error matrices of

stiffness, mass, and damping. The transformation is shown to

have the unique property of directly revealing that the

process of instrumenting an actual structure with a finite

number of response transducers defines a reduced order system,

with an attendant set of singular frequencies responsible for

the nonlinear distortion imposed on the corrective parameters

of stiffness, mass, and damping. Actual test data

demonstrating this phenomenon will be presented.
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I. INTRODUCTION

A. GENERAL

Structural system identification refers to procedures

designed to verify or improve a structural model by using

dynamic test data. It requires a comparison between two

frequency domain models. The process of structural system

identification is composed of two major steps, localization

and identification. Localization will determine the portions

of the finite element (FE) model which are in error.

Identification results in the solution for the correction to

the model. The identification process is influenced by two

main structural variables, stiffness and mass.

It is not physically possible to perform a complete

structural system identification on a real structure since an

infinite number of measurements would be required. Thus,

structural system identification must be done with spatially

incomplete data. Spatially incomplete data imposes a

frequency dependency on identifying model errors that are

otherwise frequency independent. The fundamental

characteristic is inherent in all structural identification

procedures, and is the focus of this thesis.

This thesis will use the theoretical development

discussed in reference [11 to perform structural system

identification on a simple beam.



The first study will use a computer simulation to identify the

error in a flawed (purposely installed error) beam model

compared with an ideal beam model. The second study will use

the same flawed model and perform an error identification

using data obtained from an experiment instead of simulated

data from an ideal beam model. The two main variables,

stiffness and mass, will be examined separately in both of the

studies. Case I will perform an error identification with a

large stiffness error installed in the flawed model. Case II

will repeat the procedure with a small mass error installed in

the flawed model.

B. NOMENCLATURE

GENERAL TJRMS

C: Damping Matrix
K: Stiffness Matrix
M: Mass Matrix
H: Frequency Response Function
Z: Impedance Matrix
x: Generalized Harmonic Response
f: Generalized Harmonic Excitation
X : eigenvalue sec-2

SI: circular frequency sec-
*I matrix
II vector

SUPERSCRIPTS:

a: Analytical Finite Element Model
x: Measured (Experimental) Model

SUBSCRIPTS:

a: Retained Coordinates
o: Omitted Coordinates

N: on-error Coordinates
c: Error Coordinates,

2



II. THEORETICAL DEVELOPMENT

A. FINITE ELEMENT DESCRIPTION

The finite element model of a given structure can be

defined by the relationship of structure displacement with

respect to an applied force.

= (2.1)

The force and response vectors are denoted by "f" and "x"

respectively. These vectors and the impedance matrix (Z) are

complex-valued and frequency dependent. The subscripts "i"

and "c" denote non error and error coordinates respectively.

The superscript "a" says that the quantity is calculated from

a finite element (analytical) model. If the values were

obtained from experimental test data, the superscript would be

"x". Thus for the experimental model the impedance relation

would be in a format shown in equation (2.2).

fc zý ZX xc (2.2)

The error impedance matrix quantifies the difference between

the analytical and experimental models, as a function of

frequency.

3



It is determined from the analytical and test models by

obtaining the difference between the analytical and

experimental impedance matrices. Equation (2.3) describes the

error impedance matrix relation.

oz : Z Z? Z? (2.3)

The result is that the errors in the finite element model are

associated with the error coordinates.

B. STRUCTURAL SYNTHESIS TRANSFORMATION

The impedance matrix associated with the experimental

test data is not available. The difficulty ib ,-) identify the

impedance error using frequency response function data. The

analytical tool involved in the identification between two

dynamic systems can be derived using the structural synthesis

transformation (SST)[Ref. 2]. The SST is constructed from the

as yet unknown impedance error in the finite element model.

The SST is applied to the finite element frequency response

function model producing the test frequency response function

model. The frequency response function describes the

structure response to applied excitation. The frequency

response function is the inverse of the impedance matrix.

II H: H tc f (2.4)

4



Equation (2.4) has partitioned the finite element model into

error and non-error coordinates. The response coordinate "c"

can be subject to applied forces due to the error impedances

and from applied excitation (external forces). The response

coordinate "i" will only experience externally applied forces.

Thus the force vector in equation (2.4) can be written in the

following format.

f.'+ :J(2.5a)

=~ fiezt (2.5b)

Expanding equation (2.4) into two equations and substituting

equation (2.5) into the appropriate elements results in

equation (2.6).

x = Hja.f~jJ' + Hafxt+ Hjf'(2.6a)

X0 = Hef,+ ffM + Haf (2.6b)

Equation (2.6) can be reduced into a matrix format as shown in

equation (2.7). Although there are only two expressions

associated with equation (2.6), there are three harmonic

excitation terms. The matrix associated with equation (2.7)

will have three rows to account for the harmonic excitation

terms.

i H- Hý H:0  f

=C H: 1,.H:0 H,, fc T (2.7)

XCI H Az

H.1 H:0 H:0c C

5



The coordinates "c" and "i" can be condensed into a coordinate

"e" (e = c U i).

{ f.I} = ( (fit] [fe1 t ] ] (2.8a)

f,= { f c (2.8b)

Equation (2.7) can be further condensed by utilizing the set

union and equations (2.8a,b).

x I H4 HL f e (2.9)

I:H,. HL f0

The error impedance is the difference between the analytical

finite element and test models. A transformation needs to be

constructed that will use equation (2.9) and produce a similar

result for the test system. It is expected that the

transformation will be constructed from the as yet unknown

impedance error. The impedance error is generally described

by equation (2.10).

fc = -[ [AK] - 2 [&M] + jC[AC] ] & X } (2.10a)

-[AZ(Q)] {X,} (2.10b)

The minus sign in equation (2.10) indicates the reaction

forces imposed by the impedance errors on the finite element

model are being considered. A transformation matrix can be

developed by using the results of equation (2.10b).

6



= 1 i (2.11)fc 0 -AZ xC

The results of equation (2.11) are substituted into equation

(2.9).

= (2.12)

x: H:ca. 0 -AZ (21 X)

Equation (2.12) can be reduced into the format described in

equation (2.13).

lx. Ha, -H:AZ fV

Expanding equation (2.13) into two equations and using the

superscript "*" to denote a synthesized coupled response, will

result in the expression given in equation (2.14).

7Hc-HOAZx (2.14a)

7



Thus to solve for the synthesized response, equation (2.14a)

must be further analyzed.

[I + H'Z.)xe = Haf. (2.15a)

but, X He (2.15b)

thus, [I + H.AZ]x, = x, (2.15c)

solving for xe

x. = [I + HA&AZ] 1xC (2.15d)

Substituting equation (2.15d) into equation (2.14b) will

result in the expression provided in equation (2.16).

X. = H44f. - H:LAZ[r + HAZ-IXC (2.16a)

since x. = Haf. (2.16b)

thus, x* = H,,f. - :.,AZ[I + H.,AZ]- H:.f. (2.16c)

Equation (2.4) describes a general identity involving the

frequency response function. Using the synthesized uncoupled

response designation, the following relation can be written.

x. = [H.]{ f.} (2.17)

Substituting equation (2.17) into equation (2.16c) will

provide the expression given in equation (2.18).

8



[H=[Hsa[Ha,]- [Hj[AZ] C[ + Hx,*Z'- [HR'*J]f*} (2.18a)

multiply by { fe -

[H•.] = [H:.] - [H.a][Z.][I + Ha'.OAZ] 1 [He'.] (2.18b)

Equation (2.18b) can be further analyzed.

[I + HAZ 1Z]-1 = [ (&Z- + HoI¢)AZ]- (2.19a)

given ([a][b])-1 = [bi-f [a]y (2.19b)

results [I + H0CAZ]-I = [AZ]-J [AZ-1 + HS•- (2,19c)

Equation (2.18b) can be updated by using the substituting

equation (2.19c) into the appropriate terms. The "*"

superscript that denotes the synthesized coupled response, is

replaced with an "x" superscript indicating the test system.

H• = H4 - Ha[AZ-' + H:c]-1 Ha. (2.20)

Equation (2.20) can be further expanded into a full matrix.

H" Hie H" ~Hi a-i I(AZ -1+ Hcc-lr Hý Hca, (2.21)
Hx H, [ H:j Ho4 Ha, IC

Equation (2.20) (or equation (2.21)) is used for

identification via structural synthesis transformation.

9



Equation (2.20) is dependent on both the test and analytical

frequency response functions. Since information concerning

both frequency response functions is known, the impedance

error can therefore be determined. The impedance error can be

further dissected into mass, stiffness, and damping errors via

equation (2.10).

C. FREQUENCY DOMAIN LOCALIZATION

As previously discussed, the error impedance can be

determined from the analytical and test frequency response

functions. The frequency response function is dependent upon

frequency, therefore, the error impedance is also dependent

upon frequency. The next step is to define a localization

matrix that will provide spatial diagnostic information. The

localization matrix will also provide information that will

ensure a unique identification. The following terms are

identified in equations (2.22a) and (2.22b).

&HL = H: - H: (2.22a)

D [AZ- + H'] (2.22b)

Equation (2.20) can be reduced by substituting equations

(2.22a) and (2.22b) into the appropriate terms.

Af.** = HLD-'H:. (2.23)

The localization matrix is defined by equation (2.24).

L = Z: Av.. Z* (2.24)

10



The localization matrix can be further defined by substituting

equation (2.23) into equation (2.24).

L = ZAH:oD-1 H:.z;. (2.25a)

The coordinate "e" can also be expanded into error and non

error coordinates.

"L :J Z: I I: [D-] II [D I Hý H:c I (2.25b)

The frequency response matrix is the inverse of the impedance

matrix. Multiplying these two matrices will result in the

identity matrix. Partitioning the FRF and impedance matrices

into error and non error coordinates results in the

relationship provided in equation (2.26).

Zli ZIo HI Hic 1I01

= 0 I (2.26)
ZC! ZCC Hcj H~c 1

Equation (2.26) implies that all elements with mixed "i" and

"c" coordinates will be zero. The results from equation

(2.26), equation (2.25b) can be rewritten in the format of

equations (2.27a) and (2.27b).

L = InID-1IO I0 (2.27a)I°°
L = 0 1D-1 (2.27b)

0D



Equation (2.27b) indicates that the localization matrix will

produce a non zero value in the partition corresponding to the

response error coordinate set "c".

D. IMPEDANCE ERROR

The impedance error can be determined from equation

(2.21). The conclusion from equation (2.27b) is that terms

associated with non error coordinates will be zero. Applying

this conclusion to equation (2.21), the non error coordinate

elements will assumed to be zero, and equation (2.21) can be

simplified.

= = - Ha,[Z-1 + Ha]-lHc (2.28)

Equation (2.28) can be solved such that the impedance error is

dependent upon the analytical and test frequency response

functions at error coordinates determined from the

localization matrix.

[AZ] = ([H(c] - [fl] (2.29a)

where [Hz] = ([H•]-[AH][H•]-)- (2.29b)

Equations (2.29a) and (2.29b) are used to solve for the error

impedance at a single frequency. A system of several

equations over a range of frequencies can be used to solve for

the impedance.

12



AZI(01) I -S2 21 jS1I

Z,(Q2) I -02'I jQ 2 I 2 MC (2.30)

•Z¢(n.)~~ ACC2I n

E. SYSTEM REDUCTION

It is physically not possible to perform a complete

structural system identification over a frequency domain.

This would require the number of response coordinate locations

and measuring devices to be equal to the number of elements of

the finite element model. The result for a real world

structure is a measured frequency response function matrix

that is spatially incomplete. To perform the structural

system identification using the equations developed in this

section, the analytical frequency response function matrix

must be reduced in size such that it is equivalent in size to

the test frequency response function matrix. Two reduction

methods will be investigated; Extraction Reduction [Refs.

2,3], and Improved Reduction System (IRS) [Ref. 4].

1. Extraction Reduction

Extraction Reduction is a process which extracts selected

elements from a frequency response function matrix. The

extracted elements pertain to those coordinates for which

measured data is available. The procedure requires

determining the impedance matrix from the complete stiffness

and mass matrices associated with the finite element model.

13



The frequency response function (FRF) matrix is then obtained

by inverting the impedance matrix. The reduced FRF matrix is

obtained by extracting the elements associated with the

desired coordinates. The retained coordinates are known as

"ASET" coordinates, are associated with the measured points on

the structure. The reduced FRF matrix consists of ASET

coordinates. The omitted coordinates are known as "OSET"

coordinates. The reduced impedance matrix is then calculated

by inverting the reduced FRF matrix.

2. Improved Reduction System (IRS)

The Extraction Reduction method introduces the "ASET" and

"OSET" coordinates. The general impedance relation of

equation (2.1) can be adjusted to reflect this coordinate

system.

= Zoa 0 
(2.31)

fa = ZaaXa + ZaOXO (2.32a)

fo = Zoaxa + ZOOX0 (2.32b)

Equation (2.31) can be expanded into two equations.

Since the OSET coordinates are not associated with measurement

locations on the structure, they are coordinates of non

interest. Therefore the forcing function at the OSET

coordinates can be set equal to zero.

14



Adjusting equation (2.32b) will result in the solution for the

generalized structural response.

X') : -IZZoaxa (2.33a)

K a

O I [xo] (2.33b)

Equation (2.34) is obtained by substituting the results of

equation (2.33b) into equation (2.31).

f - I IXa} (2.34a)
0 ZoaZoo -Z oo Zoa

-1

S[Za - ZaoZoZoaJ] {xa} (2.34b)

In the static case (frequency is zero), the general impedance

relationship of equation (2.10a), demonstrat3s that only the

structural stiffness will influence the correlation between

the retained and omitted coordinate response.

-1

f{xo} = [ -K,;oKo, I{x& } (2.35)

x [-KooKoa + TM tatK.t.J] {xa} (2.36a)
-i-1 

-1

T - Kooooa (2.3 6b)

The IRS relationship [ref. 5] is presented in equations

(2.36a) and (2.36b).

15



The IRS procedure starts with obtaining the complete

stiffness and mass matrices from the finite element program.

The next step is to partition the matraices into retained and

omitted set coordinates.

K = K: KKI (2.37a)

M= I ff. M.0 (2.37b)

Transforming the retained coordinates (ASET partition)

with the transformation matrix will produce the reduced mass

and stiffness matrices.

Ki = tTK.: t (2.38a)

S= tTMa t (2.38b)

Determining the transformation matrix "t" requires two steps.

The first step is to solve for "T" with equation (2.36b).

Solving equation (2.36b) only solves the lower partition of

equation (2.33b). To complete the transformation, the upper

partition of equation (2.33b) must be included. To complete

the transformation, an identity matrix the size of the number

of retained coordinates is added to the "T" matrix.

t T (2.39)
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Utilizing the results from equations (2.38a) and (2.38b), the

reduced impedance and FRF matrices can be calculated in a

manner similar to that of extraction reduction.

= K- - (2.40a)

H-- = (2.40b)

17



III. COMPUTER SIMULATION

A. BEAM MODEL

1. General Description

Presented in this section are the results of two computer

simulations that will elaborate on the theory presented in the

previous section.

The structure that will be modeled for the simulation

will be a simple beam.

TABLE 3-1: IDEAL BEAM SPECIFICATIONS

PARAMETERS VALUE SOURCE

Length 60.625 in Measured

Width 1.5656 in Measured

Thickness 0.5339 in Measured

Density 0.284 lb/cu.in Calculated

Modulus 28*e+06 psi Appendix B

The ideal beam model is defined as the finite element

model of the beam described in Table 3.1 (Appendix B) and will

simulate the test data of the actual structure. The flawed

(or error) model is defined similarly to the ideal beam model

with the exception of a purposely installed error within the

finite element model. The flawed model represents the best

attempt at modeling, which results in an imperfect model.

Two distinctly flawed models will be investigated. Case I

will have a large stiffness error.

18



Case II will have a small mass error. Table 3.2 furnishes a

summary of the details involved in the case studies.

TABLE 3-2: CASE STUDY SUMMARY

CASE ERROR TYPE VALUE LOCATION

I Modulus 9.0*e+06 psi Element #2

II Density 0.25 lbm/in-3 Element #3

The installed errors are graphically represented in

Figures 3-1 thru 3-3. The true stiffness and mass errors for

each case are displayed. The true error for the case I mass

matrix and the case II stiffness matrix are zero.

2. Natural Frequencies

The natural frequencies of the ideal model and both

flawed models were calculated by determining the stiffness and

mass matrices and then solving for the eigenvalues.

TABLE 3-3: NATURAL FREQUENCIES (HZ)

MODE IDEAL CASE I CASE II

First 29.07 20.27 29.56Second 79.96 64.33 81.32

Third 157.14 124.47 159.94

Fourth 259.39 222.18 263.26

Fifth 387.85 324.06 396.23

The natural frequency values of case II are much closer to the

ideal model than that of case I. This is due to case II

having a smaller installed model error.

19
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3. Frequency Response

A comparison of the frequency response functions (FRF) of

the ideal beam model with each of the flawed beam models was

performed. The associated mass and stiffness matrices were

determined for each model and used to calculate the FRF matrix

(H) at a given frequency. A comparison was done by plotting

the "1,1" element of the FRF matrix over a frequency range

from 20 to 420 hz. Figures 3-4 and 3-5 display the results of

the calculations. The FRF matrices of the flawed and ideal

models compare much closer in case II (Figure 3-5) than case

I. This is a result of the modeling error being much smaller

in case II. A comparison between frequency response functions

is important when determining the accuracy of a finite element

model. When comparing a finite element model with an actual

FRF, the closer the curves approximate each other, the better

the model approximates the actual structure.

B. LOCALIZATION MATRIX

The localization matrix provides spatial diagnostic

information pertaining to the errors in the finite element

model of the structure. The localization matrix reveals the

error coordinate subset from the ASET. This is required to

ensure a full rank solution for the impedance matrix. The

computer simulation will define the flawed finite element

model as the analytical model, and the ideal beam finite

element model as the test model.

23
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A spatially complete localization matrix is calculated

and displayed in Figures 3-6 and 3-7. The location of the

error described in Figure 3-6 will be a summation of the mass

and stiffness errors (Figures 3-1 and 3-2). Since the mass

error (Figure 3-2) is zero, the error location in Figure 3-6

matches the error location of Figure 3-1. The results of the

spatially complete localization for case II parallels those of

case I (Figures 3-7 and 3-3). It is also important to note,

that these figures were calculated at a frequency of 50 hz.

The figures did not change shape with frequency.

1. Extraction Reduction

Extraction Reduction is the process of extracting

selected matrix elements from a given FRF matrix. The

selected elements will be associated with those coordinates

that have available data. In the computer simulation, the

beam is divided into 24 elements, two degrees of freedom per

element plus a coordinate at each end. This will result in

both the stiffness and mass matrices to be 50x50 elements in

size. The FRF matrix, which is calculated from the mass and

stiffness matrices, will also be 50x50 elements in size. The

goal of the matrix extraction will be to reduce the size of

the FRF matrix to 5x5 elements. This will correspond to the

translational excitation and response coordinates. Each case

will have the localization matrix plotted for three separate

frequencies (35,150,350 hz) and an element of the localization

matrix plotted over thi entire frequency range.
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a. Case I (Large Stiffness Error)

Case i involved a large stiffness error between beam

elements number two and three. The localization matrix was

calculated at three arbitrarily selected frequencies

(35,150,350 hz) to ensure spacing throughout the range of 20-

420 hz. Figures 3-8 thru 3-10 displays the plots of the

localization matrix for the frequencies selected. The actual

value of the localization matrix is not the important result,

it is the location of that maximum value that is the most

meaningful. The location of the maximum value designates the

error coordinates and indicates where the significant error

exists in the finite element model of the structure. Figures

3-8 and 3-10 indicate an error between the second and third

coordinates. Figure 3-9 also shows an error at the third

coordinate, with possible errors at the second and fourth

coordinates. Figure 3-9 does not conclusively reveal the

error location. The overall important result is that these

figures correlate with the true error that was installed

between the second and third beam elements. These figures

also reveal that the localization matrix varies with

frequency.

The second calculation involves computing the

localization matrix over a frequency range. Figures 3-11 and

3-12 display the plots of the "2,2" and "3,3" elements of the

localization matrix over a frequency range of 20 to 420 hz.
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In comparing Figures 3-11 and 3-12, although the actual

value of the elements vary, the peak values occur at the same

frequencies. When considering equations (2.24) and (2.22a),

large values of the localization matrix element are expected

at the test system eigenvalues. Equation (2.34b) indicates

that the omitted set impedance will not exist over the entire

frequency domain.

[Z,]-1 = (det [Z,,])- adj (Z•,] (3.1a)

det [Zo] = det[(K - 2moo] (3.1b)

Equation (3.1a) and (3.1b) reveal that for the OSET

eigenvalues, the FRF matrix is large (unbounded for undamped

systems). The nine peak values in Figures 3-11 and 3-12

correspond to the test model natural frequencies and the

eigenvalues of the analytical model omitted coordinates.

Table 3-4 provides a summary of the peak frequencies.

TABLE 3-4: PEAK FREQUENCIES - Case I

PEAK FREQUENCY (HZ) MODEL: TYPE

29.07 Test: Natural Frequency

79.96 Test: Natural Frequency

157.14 Test: Natural Frequency

172.60 Analytical: OSET Frequency

225.34 Analytical: OSET Frequency

259.39 Test: Natural Frequency

265.46 Analytical: OSET Frequency

354.07 Analytical: OSET Frequency

387.05 Test: Natural Frequency
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b. Case II (Small Mass Error)

Case II involves a small mass error located between

elements number three and four. The localization matrix was

calculated at the same frequencies as case I (35, 150, 350

hz), and displayed in Figures 3-13 thru 3-15. It is evident

from the figures that a model error is located at the third

coordinate. Figures 3-13 and 3-14 show a peak value (although

slightly hidden) corresponding to the fourth coordinate.

Figure 3-15 shows an error at the second coordinate with a

minor error at the fourth coordinate. Figure 3-15 by itself

does not conclusively reveal the error location, but the

combined evaluation of all three of the mesh plots do provide

an approximation to the location of the installed model error.

When comparing the results of case II with those of case I

(Figures 3-8 thru 3-10), the localization matrix values of

case II are smaller in magnitude, but spatial identification

of the error locations are more apparent in case II. The

localization matrix was also calculated on a frequency domain

with a similar procedure used in case I. Figures 3-16 and 3-

17 display the plots of the "3,3" and "4,4" elements of the

localization matrix. As in case I, the plots associated with

case II display peak values at the test system natural

frequencies and the analytical model OSET eigenvalues. Table

3-5 provides a summary of these results.
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TABLE 3-5: PEAK FREQUENCIES - CASE II

PEAK FREQUENCY (HZ) MODEL: TYPE

29.07 Test: Natural Frequency

79.96 Test: Natural Frequency

157.14 Test: Natural Frequency

213.03 Analytical: OSET Frequency

246.12 Analytical: OSET Frequency

259.39 Test: Natural Frequency

333.20 Analytical: OSET Frequency

387.85 Test: Natural Frequency

2. Improved Reduction System (IRS)

Matrix reduction uses the IRS reduction as described in

Section II.E.2. The computer simulation will reduce the

flawed and ideal model frequency response functions from a

50x50 element matrix to a 5x5 element matrix. The five

elements ir the reduced matrix will pertain to the

translational excitation and response coordinates. In

analyzing real structures, the test FRF matrix will already be

in the reduced format. It is important to note that the

purpose of the matrix reduction is to reduce the analytical

model FRF matrix to a size equivalent to that of the test FRF

matrix. For the purpose of the computer simulation, the ideal

beam model (defined as the test model) will be reduced via

extraction reduction in order to reproduce the reduction

process inherent in spatially incomplete measurements. The

flawed finite element model (defined as the analytical model)

will be reduced via IRS;
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a. Case I (Large Stiffness Error)

The same calculations that were performed using the

extraction reduction method were repeated using the IRS

reduction method. The first calculation for determining the

localization matrix at a specific frequency was performed at

three frequencies (35, 150, 350 hz) and the results are

displayed in Figures 3-18 thru 3-20. The first result is

that the estimation of the model error location is not

identifiable in any of the three figures. The actual value of

the localization matrix are seven orders of magnitude higher

than the corresponding values for the extraction reduction

method. The reason that the error location is not

identifiable is that the stiffness and mass matrices are

transformed into new coordinates. This effectively hides the

location of the model error. The second calculation was to

determine the localization matrix over a frequency domain.

Figures 3-21 and 3-22 display the plot of the "2,2" and "3,3"

elements of the Localization Matrix over a frequency domain of

20 to 420 hz. Since the reduced FRF matrix does not involve

the OSET impedance, the singularities expected with the

eigenvalues of the analytical model OSET coordinates

disappear. The test model natural frequencies continue to

appear in both figures 3-21 and 3-22.

b. Case II (Small Mass Error)

Case II results are the same as those of case I. No

plots of Case II are provided.
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C. IMPEDANCE ERROR SPECTRA

Equation (2.3) describes the impedance error between the

analytical and test models. Equations (2.29a) and (2.29b)

provide a method for calculating the impedance error using the

analytical and test frequency response functions. The

computer simulation will be performed in the same manner as

Section III.B to calculate the impedance error for spatially

incomplete data.

1. Extraction Reduction

In trying to predict the behavior of the impedance error

spectra, equation (2.3) can be considered in the equivalent

form (equation (3.2)) in conjunction with equation (2.34b).

AZ = Zf(Qd) - Z:0 (f1 ) (3.2)

The result of this analysis is that for extraction reduction,

the impedance error spectra will be large (unbounded for

undamped systems) at the OSET eigenvalues of both the

analytical and test models.

a. Case I (Large Stiffness Error)

Figure 3-23 is a plot of the "1,1" element of the

impedance error over a frequency domain of 20 to 420 hz. All

five coordinates from the reduced FRF matrix were used in the

calculations. The OSET eigenvalues for both the analytical

and test models appear as peak values in the figure. Table 3-

6 provides a summary of the peak values.
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TABLE 3-6: OSET EIGENVALUES - CASE I

Analytical Model (hz) Test Model (hz)

172.60 209.92

225.34 244.90

265.46 327.96

354.07 423.79

Equations (2.34a) and (2.34b) reveal that given the

location of the error coordinates from the localization matrix

(Figures 3-8 thru 3-10), the calculations of the impedance

matrix must be performed by using only the error coordinates

instead of the entire reduced matrix. Figure 3-24 is a plot

of the impedance error over a frequency domain, using the

error coordinates identified from the localization matrix

(coordinates two thru four) in the impedance error

calculations. The results are not consistent with those of

Figure 3-23. A closer investigation of Figures 3-8 thru 3-10

indicates that neglecting coordinates one and five as

insignificant was not a good assumption. Values of the

localization matrix at these coordinates, although small, are

not insignificant. The poor assumption induces an error in

the impedance error calculation and causes the plot to be

inaccurate. Figure 3-23 also displays a significant amount of

"noise" in the plot. This noise is a result of the large

difference between the FRF models creating a situation of

inverting poorly conditioned matrices during the impedance

error calculations.
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b. Case II (Small Mass Error)

Figure 3-25 is the same plot as figure 3-23 with the

exception that it applies to case II. The OSET eigenvalues

for both the analytical and test models also appear in this

figure. Table 3-7 provides the case II summary of the peak

values in Figure 3-25.

TABLE 3-7: OSET EIGENVALUES - CASE II

Analytical Model (hz) Test Model (hz)

213.03 209.92

246.12 244.90

333.20 327.96

2. IRS Reduction

The reduced FRF matrices are not dependent upon the OSET

coordinates. The eigenvalues from the OSET coordinates

associated with the analytical model do not appear in the

impedance error plot. Figures 3-26 and 3-27 display the

impedance error calculations using IRS reduction, utilizing

all the error coordinates, of case I and case II respectively.

The test system OSET coordinate eigenvalues listed in Tables

3-6 and 3-7 appear as peak values in both figures. Since case

I and case II have identical OSET eigenvalues for the test

system, Figures 3-26 and 3-27 are identical.
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IV. EXPERIMENTAL RESULTS

A. GENERAL

In section III, an analysis of two case studies was

performed involving structural system identification of a

flawed beam finite element model with an ideal beam finite

element model. In this section, the same two case studies

will be analyzed, using the same flawed beam finite element

models of Section III with experimental FRF data. Details

about the procedures used in obtaining and arranging the

experimental FRF data is described in Appendix A.

The experimental FRF matrix is obtained in a spatially

incomplete form. The experimental FRF matrix elements are

made up of coordinates that correspond to the locations in

which the structure response and excitation can be measured.

The process of structural system identification requires that

the sizes of the experimental and analytical model FRF matrix

to be equivalent. Thus, the analytical model FRF matrix must

be reduced to the same size as the experimental FRF matrix.

B. LOCALIZATION MATRIX

1. Extraction Reduction

The flawed beam finite element model is defined as the

analytical model. The analytical model FRF matrix will be

reduced by extraction. The translational excitation and

response locations will be the retained coordinates.
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a. Case I (Large Stiffness Error)

The first calculation performed was determining the

localization matrix at a specific frequency. The same

frequencies used in Section III (35, 150, 350 hz) are used in

this section.

Figures 4-1 thru 4-3 display the results of the

localization matrix at the selected frequencies. The initial

observation is that larger values of model errors are

associated with the second, third, and fourth coordinates.

Figure 4-3 emphasizes larger model errors associated with the

third and fourth coordinates. Comparing Figures 4-1 thru 4-3

with the appropriate figures from the computer simulation

(Figures 3-8 thru 3-10), two of the three figures exhibit

similar shapes (location of large model errors). The

localization matrix determination with the experimental system

does not explicitly identify the actual installed error

located between the second and third elements as well as the

computer simulation. It must be remembered that although

known as an ideal beam model, modeling errors do exist within

the ideal beam model when compared with the experimental

system. The flawed beam finite element model is based upon

the ideal beam finite element model. Therefore, Figures 4-1

thru 4-3 will display errors associated with both the flawed

beam and ideal beam finite element models, while Figures 3-8

thru 3-10 only display errors associated with the flawed beam

finite element model.
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The second calculation was to determine the localization

matrix over a frequency domain. Figures 4-4 and 4-5 are plots

of the "2,2" and "3,3" components of the localization matrix

over a frequency range of 20 to 420 hz. All five coordinates

of the reduced matrices were used as error coordinates.

Figures 4-4 and 4-5 display nine peak values which are

associated with the experimental system natural frequencies

and the analytical model omitted set (OSET) eigenvalues.

These results are consistent with the computer simulation

results of Section III.B.1. Table 4-1 provides a summary of

the peak values associated with Figures 4-4 and 4-5.

TABLE 4-1: PEAK FREQUENCIES - CASE I

Peak Frequency (hz) Source:

29.90 Experiment:Natural Frequency

81.20 Experiment:Natural Frequency

155.90 Experiment:Natural Frequency

172.60 Analytical: OSET Frequency

225.34 Analytical: OSET Frequency

258.30 Experiment:Natural Frequency

265.46 Analytical: OSET Frequency

354.07 Analytical: OSET Frequency

387.80 Experiment:Natural Frequency
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b. Case II (Small Mass Error)

The same calculations were performed for case II.

Figures 4-6 thru 4-8 display the localization matrix at a

specific frequency (35, 150, 350 hz). All three figures

suggest significant model errors existing at elements two,

three, and four. When these figures are compared with the

computer simulation results (Figures 3-13 thru 3-15), the

differences between the plots are much more apparent than was

observed in case I. As discussed in case I, there are

modeling errors associated with the ideal beam model that are

not included in Figures 3-13 thru 3-15. In case I, the ideal

beam modeling errors are insignificant compared with the

installed errors associated with the flawed beam model. In

case II, the flawed beam model installed error is small, thus

the ideal beam modeling errors now become significant. The

results is a larger apparent difference between Figures 4-6

thru 4-8 and Figures 3-13 thru 3-15.

Figures 4-9 and 4-10 display a plot of the "3,3" and

"4,4" elements of the localization matrix over a frequency

range from 20 to 420 hz. The peak values displayed in both

plots represent the experimental system natural frequencies

and the analytical model OSET coordinates. These results

remain consistent with those observed in case I and the

computer simulation. Table 4-2 is a summary of the peak

values observed in Figures 4-9 and 4-10.
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Table 4-2: PEAK FREQUENCIES - CASE II

Peak Frequency (hz) Source:

29.90 Experiment:Natural Frequency

81.20 Experiment:Natural Frequency

155.90 Experiment:Natural Frequency

213.03 Analytical: OSET Frequency

246.12 Analytical: OSET Frequency

258.30 Experiment:Natural Frequency

233.20 Analytical: OSET Frequency

387.80 Experiment:Natural Frequency

2. Improved Reduction System (IRS)

The procedure used in Section IV.B.1 is repeated in this

section with the exception that the analytical model will be

reduced via the IRS method.

As discussed in Section III.B.2.a, determining the

localization matrix at a specific frequency provides little

useful information, thus that calculation will not be

performed in this section.

a. Case I (Large Stiffness Error)

Figure 4-11 displays e "2,2" element of the

localization matrix plotted over a frequency range of 20 to

420 hz. The five peak values that appear n-t•ze figure, are

all associated with the experihtental system natur~l

frequencies.
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b. Case II (Small Mass Error)

Figure 4-12 displays the "3,3" element of the

localization matrix plotted over a frequency range of 20 to

420 hz. The experimental system natural frequencies appear as

peak values. This remains consistent with the results from

case I and the computer simulation. Table 4-3 is a summary of

the peak values displayed in Figures 4-11 and 4-12.

Table 4-3: PEAK VALUES CASE I AND II

Frequency (hz)

29.90

81.20

155.90

258.30

387.80

C. IMPEDANCE ERROR

The impedance error calculations performed in Section

III.C. is repeated in this section. The experimental FRF

matrix will be used instead of the reduced FRF matrix from the

ideal beam finite element.

1. Extraction Reduction

a. Case I (Large Stiffness Error)

Figure 4-13 is a plot of the "1,1" element of the

impedance error matrix over a frequency range from 20 to 420

hz.
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The results of the impedance error calculations performed

in computer simulation (Section III.C.1) reveal that the peak

values of the impedance error versus frequency plots were

associated with the OSET coordinate eigenvalues from both the

analytical and test models. Figure 4-13 does display the

expected peak values associated with the OSET coordinate

eigenvalues, but four of the five experimental system natural

frequencies also appear as peak values within the figure (a

peak at 258.30 hz is not visible). The appearance of these

natural frequencies is not fully understood. In trying to

determine why these natural frequencies appear, the ideal beam

finite element model was modified to include damping (Appendix

B). The reasoning to include damping is that the experimental

FRF matrix is complex valued while the FRF matrix from the

finite element programs consist only of real valued elements.

The results are displayed in Figure 4-14. The analysis is

that the experimental system OSET eigenvalues decreased in

magnitude, but the peaks associated with the experimental

system natural frequencies remain. Although the appearance of

the natural frequencies are not known, it remains that the

OSET coordinate eigenvalues do appear as peak values. It is

also interesting to note that the experimental system natural

frequency peaks do not appear as clean as the OSET coordinate

eigenvalues.
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b. Case II (Small Mass Error)

Figure 4-15 is a plot of the "1,1" element of the

impedance error matrix over a frequency range from 20 to 420

hz. The peak values that appeared in Figure 4-13 also appear

in Figure 4-15. The important result is the appearance of the

OSET coordinate eigenvalues.

2. Improved Reduction System (IRS)

Figure 4-16 displays the plot of the impedance error over

a frequency range of 20 to 420 hz utilizing IRS reduction of

the analytical model FRF matrix for case I. The peak values

in the plot are associated with the OSET coordinate

eigenvalues of the experimental system. Two of the

experimental system natural frequencies (155.90 and 387.80 hz)

slightly appear. As in Section IV.C.1, the important result

is the appearance of the OSET coordinate eigenvalues. These

results remain consistent with the results of the computer

simulation (Section III.C.2). The results for case II are

identical to the results of case I.

D. IDEAL BEAM MODEL

The previous two sections have described structural

identification of a flawed beam finite element model against

an ideal beam finite element model and against an experimental

system. The next step is to perform a structural

identification of the ideal beam model versus the experimental

system. This step is to determine the accuracy of the best

finite element model against the experimental structure.
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1. Localization

The ideal beam model will provide the analytical FRF and

will be reduced to match the size of the experimental system

FRF matrix. The retained coordinates will correspond to the

translational response and excitation coordinates.

a. Extraction Reduction

The ideal beam model was reduced using extraction

reduction. Figures 4-17 thru 4-19 display elements "1,1",

"3,3", and "4,4" of the localization matrix plotted over a

frequency range from 20 to 420 hz. In analyzing the three

figures, all the test system natural frequencies appear as

expected. However, several of the analytical model OSET

eigenvalues do not appear in each of the figures. Table 4-4

provides a summary of the analytical model OSET eigenvalues

for the "1,1", "2,2", and "4,4" elements of the localization

matrix.

TABLE 4-4: OMITTED SET COORDINATE EIGENVALUES

L L L

11 33 44

209.92 hz Missing Missing

244.90 hz 244.90 hz 244.90 hz

327.96 hz Missing 327.96 hz
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The missing OSET eigenvalues appear to be a result of the

beam finite element model being homogeneous. Since actual

structures are generally more complicated than a simple beam,

the missing OSET eigenvalues are a result of the simplicity of

the experimental structure and not of importance. A more

detailed discussion concerning the missing OSET eigenvalues is

provided in Appendix D.

b. Improved Reduction System (IRS)

Figure 4-20 displays the "1,1" element of the

localization matrix over a frequency range of 20 to 420 hz.

As expected, the test system natural frequencies appear as

peak values.

2. Impedance Error

As was done with the localization matrix calculation, the

impedance error calculation was performed using the ideal beam

model as the analytical model FRF matrix. The analytical

model will be reduced to match the size of the experimental

system FRF matrix.

a. Extraction Reduction

Figure 4-21 thru 4-23 display the "1,1", "2,2", and "3,3"

element of the impedance error over a frequency range from 20

to 420 hz. The same problem of the missing OSET eigenvalues

in the localization matrix for the analytical model occur in

the impedance error plots. In addition, the corresponding

OSET eigenvalues for the test system are also missing from the

Figures 4-22 and 4-23..

85



.. .....7. ... ....... ......... ------- ... ... .--------- --- ----------

---- --- - -- -- ------- --- - - - - --- -

-- -------- ----0- -- -------- - ---------

"4-5 ------ ------- ---- ----------I...... --7------- ----- ----------

0 50 100 150 200 250 300 350 400 450
Frequency (hz)

FIGURE 4-20: L11(Q)
Ideal Beam Model

IRS

86



100

7 -- ----- --- ---

6 --------- ----- ----- ------- ........---- ----------- - -- ------------- -- ------------

----------- ---- 
-----

---8-- --

5. ......----------------------- ---- ----------- --------------

0 50 100 150 200 250 300 350 400 450
Frequency (hz)

FIGURE 4-21: AZ11(Q)

o ) Qx,, Ideal Beam Model

87



10 --------

7 --- -------. 4

0 50 10 10 20 2Ma 5 W 4

Frequency (hz)
FZGURC 4-22: AZ22

( ) 004s ( o)Q'C'sa

S)QxEt Meal Beam Model

88



10

-- -- -- -----

0 50 100 150 200 250 300 350 400 450
Frequency (liz)

FIGURE 4-23: AZ33

( x ) t Ideal Beam Model

89



The missing OSET eigenvalues for the impedance error

spectra is similar to those missing from the localization

matrix calculations. Since the ideal beam model finite

element is a very close approximation to the experimental

structure, the missing OSET eigenvalues associated with the

test system is consistent with those missing from the ideal

beam finite element model. A detailed description is provided

in Appendix D.

b. Improved Reduction System (IRS)

Figures 4-24 thru 4-26 display the plots of the same

impedance error elements as Figures 4-21 thru 4-23 with the

exception that the ideal beam model was reduced using the IRS

method. As expected, Figure 4-24 shows all the test system

OSUT eigenvalues as peak values. Figures 4-25 and 4-26 are

consistent with Figures 4-22 and 4-23 in that there are

missing test system OSET eigenvalues. This will be addressed

in Appendix D.
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V. CONCLUSIONS / RECOMMENDATIONS

A. SUMMARY

1. Extraction Reduction

a. Localization

The localization matrix at a specific frequency provides

an approximation to the location of the error associated with

the finite element model. Spatially incomplete data will not

provide a true error location.

A nonlinear dependence of the localization matrix with

frequency results due to performing spatially incomplete

identification. The plot of localization matrix versus

frequency results in peak values corresponding to the test

system natural frequencies and the analytical model OSET

eigenvalues.

b. Impedance Error

The plot of the impedance error matrix versus frequency

results in peak values corresponding to the OSET eigenvalues

associated with the test system and analytical models. Test

system natural frequencies did appear when using experimental

test data.
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2. Improved Reduction System (IRS)

a. Localization

Since the IRS transforms the stiffness and mass matrices,

the localization matrix at a specific frequency provided no

useful information about error location or identification.

The plot of the localization matrix versus frequency resulted

in peak values corresponding to the test system natural

frequencies.

b. Impedance Error

The plot of the impedance error matrix versus frequency

results in peak values corresponding to the OSET eigenvalues

associated with the test system only.

B. CONCLUSIONS

This thesis has discussed a general theory for error

localization and identification. When using frequency

response data from a finite element model and an experimental

structure, the theory extracts from the matrix difference of

the FRF, a set of impedance error spectra.

Spatially complete data will provide the true frequency

independent error spectra of mass, stiffness, and damping.

Spatially incomplete data can provide an approximate frequency

error spectra, but it is impossible to localize and identify

the independent errors specifically.
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The identification of a secondary dynamic system

comprising the coordinates not measured in the vibration test,

impacts the test results.

The eigenvalues of this secondary system provide the

nonlinearity imposed on the identified parameters. The

secondary system ultimately results in the inability to

localize and identify the true errors associated with the

spatially incomplete data.

C. RECOMMENDATIONS

The real purpose of this thesis was to test the theory

provided in references (1,2] with actual frequency response

data.

Although satisfactory results were achieved,

investigation is still needed for the following items:

- Determine the reason for the appearance of test system
natural frequencies in the impedance error spectra using
experimental test data.

- The actual mechanism in the finite element model that is
causing the missing OSET eigenvalues.

- Implementation of angular test data into the results.

The logical supplement to this test would be to utilize

a more complex structure to localize and identify finite

element model errors.
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APPENDIX A

TEST EQUIPMENT \ PROCEDURE

I. GENERAL SYSTEM DESCRIPTION

A. Purpose

The overall purpose of the test system is to vibrate a

given beam at a known force and frequency, and measure the

beam response. A frequency response function (FRF) is

obtained by repeating the test over several frequencies of

interest. The FRF data is then sent to a personal computer

for further calculations.

B. System Setup

Figure A-1 is the schematic of the test system. The HP

3562A Dynamic system analyzer controls, measures, and

tabulates the FRF. The HP 3562A sends an electronic signal

via the SS 250 amplifier that causes the shaker to vibrate at

a given frequency and force. This force is measured by the

load cell that is attached to the shaker and the beam. This

data is sent back to the HP 3562A via the load cell power

supply. The beam acceleration is measured by an

accelerometer. The accelerometer data is also sent to the HP

3562A via a separate power supply. The HP 3562A performs two

fast fourier transforms and develops the FRF. This data is

sent to a data disc via the HP 9122 disk drive. The personal

computer then obtains the data from the HP 9122 disk drive.
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C. System Components

1. HP 3562A Dynamic Signal Analyzer

The HP 3562A is a two-channel analyzer. The source

connection supplies the controlling information to the shaker

assembly. Channel one receives data from the load cell while

channel two receives data from the accelerometer. During a

specific data collection operation the HP 3562A can only

collect data from the load cell and one accelerometer. The

resultant FRF contains 801 data points.

2. HP 9122 Disc Drive

The HP 9122 Disc Drive contains two ports for 3.5" data

discs and an HPIB connection port. The HP 9122 is connected

to the HP 3562A and the personal computer via the HPIB

connection.

3. Personal Computer

The Personal Computer is a DataStor 486 - 66 Mhz

computer. An AT-GPIW interface card is installed within the

computer. This allows an HPIB interface with the HP 9122 disc

drive. Software utilized is MATLAB 4.0 with windows and the

HP Standard Data Format (HPSDF). The HPSDF software allows

the HP 3562A LIF format data to be transformed into a MAT file

for use by MATLAB.
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4. Accelerometers

The accelerometers are part of the Model 8832

Translational Angular Piezobeam (TAP) system. The

accelerometers measure Translational and angular acceleration

(note: The HP 3562A, which is only two channels, can only

accept input from the angular or translational output, not

both simultaneously).

The accelerometers are mounted to the beam with a thin

layer of wax. The operational theory associated with the

accelerometers is provided in reference [6]. Specific

accelerometer data sheets are provided in this appendix. A

total of five accelerometers was used, spaced 15" apart. The

accelerometer power supply used 115 volt power from a typical

laboratory space outlet.

5. Load Cell

The Load Cell is an Integrated Circuit Piezoelectric

(ICP) transducer. The load cell contains a 10/32" tapped

connection at each end. One end is attached to the beam and

the other end to the shaker assembly via two separate 10/32"

screws. The operational theory is provided in reference [71.

Specific transducer data is provided in this appendix. The

power supply uses a 1.5 volt battery.
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6. Shaker Assembly

The Shaker Assembly is composed of the SS 250 amplifier

and the PM25A Vibration Exciter. The PM25A is an

electromagnetic vibrator. The SS 250 amplifier allows control

of the maximum displacement produced by the vibrator. The

PM25A is attached to the Load Cell via a 10/32" scre-, The

operational theory of the PM25A and the SS 250 is pr, d in

reference [8].

7. Beam

Discussed in detail in Appendix B.

II. TEST PROCEDURE

A. System Designation

The beam has five accelerometers and one load cell

attached at any given time. Figure A-2 shows the numbering

associated with the accelerometers and load cell locations.

i1 52 83 #4 s5

/

* U " U\

FZGUtE A-2: Accelerometerl
Load Cell Designation
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Each accelerometer measures translation and angular

acceleration that result in ten (5x2) response coordinates.

Odd numbers are associated with translational motion, and even

numbers are associated with angular motion. Since the shaker

only provides translation force (no moments are produced),

there are only five excitation coordinates that are odd

numbered. Table A.1 provides a summary of the coordinate

designation.

TABLE A-i: COORDINATE SYSTEM DESIGNATION

Location Number Response Excitation

Coordinate Coordinate

1 1,2 1

2 3,4 3

3 5,6 5

4 7,8 7

5 9,10 9

Thus, for example, consider frequency response function h2_5.

The number "2" indicates that the response is the angular

measurement at location #1 and the number "5" indicates the

excitation at location #3.
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B. System Physical Setup

1. HP 3562A

The HP 3562A is connected to the various components using

a coaxial cable. The source outlet is connected to the SS 250

amplifier. Channel one is connected to the load cell power

supply and channel two is connected to the accelerometer power

supply. Each accelerometer power supply has two connection

points; one for translational motion, the other for angular

motion. Only one connection point is used per data run.

2. Shaker Assembly

The SS 250 amplifier is connected via an electrical cable

to the PM25A Vibration Exciter. The PM25A is physically

attached (via a 10/32" screw) to the back side of the load

cell.

3. Accelerometers/Load Cells

The load cell is physically attached (via two separate

10/32" screws) to the shaker and the beam. The electrical

output of the load cell is sent to the power supply. The

accelerometer electrical output (one cable) is sent to the

accelerometer power supply.

C. Data Acquisition

1. HP 3562A

Table A-2 provides a summary of the programmed setpoints

of the HP 3562A for a single data collection operation.
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TABLE A-2: HP 3562A PROGRAMMED SETPOINTS

PROGRAM SETPOINT SETTING

Measure Mode Swept Sine wave
Linear Sweep

Select Measurement Frequency Response

Average Averages: 3
Auto Integral: 1%

Frequency Start (20,120,220,320 hz)
Span (100 hz)

Source Source Level: 0.5 v

Engineering Units Load Cell: 52.56 mv/eu
Accelerometer: various

EU Label Load Cell: mv/lbf
Accelerometer: mv/g

mv/(rad/s2)

2. System Operation

Placing the HP 3562A in "run" commences the data

collection operation. Each data collection operation requires

approximately 13 minutes. There was a total of 250 data

collection operations (50 runs at each frequency span, 10

response positions and 5 excitation positions, with 5 separate

starting frequencies).

If the shaker assembly was not properly aligned with the

beam, response was audible at the system resonant frequencies.

The FRF plot on the HP 3562A also exhibited noise vice a

smooth curve.
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D. Data Transformation

This portion of the procedure is the transfer of the data

from the HP 3562A to the personal computer that will allow the

data to be evaluated using MATLAB codes.

1. File Designation

Data files are labeled in the following format.

h#1_#2X: h - letter designator to indicate FRF
#1 - number indicating response coordinate
#2 - number indicating excitation coordinate
X - letter indicating frequency band

A : 20 -120 hz
B : 120 - 220 hz
C : 220 - 320 hz
D : 320 - 420 hz

Thus, for example, h2_SB indicates an FRF that is measuring

the angular response at position #1, excitation occurring at

position #3, and at a frequency band of 120 - 220 hz.

2. HP 3562A to Personal Computer (PC)

Once an FRF is obtained by the HP 3562A, the data is

transferred from the HP 3562A to the HP 9122 Disc drive.

Chapter 12 of reference [91 provide detailed procedures for

saving and labeling files from the HP 3562A to the HP 9122.

The files saved to the HP 9122 were labeled in the format

described in Section D.1.

Using the HPSDF software, the PC accesses the file from

the HP 9122 and stores the data within the HPSDF directory.

The files stored in the HPSDF were also labeled in the same

format as described in Section D.1. Appendix A of reference

[101 provides a detailed procedure on transferring data from

the HP 9122 to the PC.
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Two important items that are not mentioned in the

reference [10] will influence data operations. Transferred

data will be located in the PC hard drive under the HPSDF

directory. The second item that is more significant, involves

an interface problem between the PC, HP 3562A, and the HP

9122. After accessing data from the HP 9122 with the PC, the

system will not allow subsequent transfer of data from the HP

3562A to the HP 9122. The HP 3562A will display a "disc drive

not online" warning. Further attempts to access data from the

HP 9122 with either the HP 3562A or the PC will be

unsuccessful. Complete shutdown of the PC solved the

immediate problem. The overall solution is procedural in

nature. All data collection operation by the HP 3562A and

transfer to the HP 9122 is completed before any data transfer

from the HP 9122 to the PC.

3. MAT files

After transfer from the HP 3562A to the PC is completed,

the files are located and labeled as C:>HPSDF\*.DAT . The *

is a wild card designator that describes a specific file

labeled in the format described in Section D.1.

Utilizing Appendix A of reference [101, a single *.DAT

file is then transformed into a FREQRESP.MAT file. The HPSDF

software will always name the transformed file FREQRESP.MAT.
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If several files are being transferred, the newer files

will over write the older files, thus losing the information

from the older files. The FREQRESP.MAT file must be renamed

before transforming any subsequent *.DAT files. The DOS

command, within the HPSDF directory, RENAME FREQRESP.MAT

*.MAT (* is the wild card designator previously described)

will accomplish the task of preventing older files from being

lost.

Each *.MAT file has two variables, o2ilx is the frequency

coordinate, and o2il is the y-axis value. The y-axis value is

a complex number.

E. Data Manipulation

After completion of data transfer and transformation,

there exists 250 *.MAT files that must be further manipulated

in order to achieve efficient processing with the MATLAB

software.

The first step is to transfer the *.MAT files from the

HPSDF directory to the MATLAB directory. The *.MAT files were

sent to the directory C:>MATLAB\BEAMDATA using Microsoft

Windows Version 3.1.

In order to achieve better computing efficiency, the 250

*.MAT files (each *.MAT file contains a matrix of 801 x 2

elements) is transformed into four files each containing 801

x 50 elements. The o2ilx variable is ignored since the

frequency range is linear (frequency spacing between elements

is 0.125 hz).
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The four files were labeled into the following format.

he*.mat he: FRF designation
*: Frequency Range designator

a: 20 - 120 hz
b: 120 - 220 hz
c: 220 - 320 hz
d: 320 - 420 hz

These four files are also located in the directory

C:>MATLAB\BEAMDATA. Thus, for example, to obtain the FRF

matrix for a frequency of 100 hz would require accessing the

hea.mat file and extracting row 640 ((100-20 hz)* 8 rows/hz),

columns I thru 50.

These four files provide the data for the test system FRF

in the MATLAB codes used to solve the localization and

impedance error calculations.
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Calibration Certificate

TAP TM

TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL 8832

Accelerometer Model 8696 .............................. SN C58089
Coupler Model 5130 .................................... SN C34612

Angular Sensitivity at 250 Hz, 130 rad/s 1  0.478 mV/rad/sl
Linear Sensitivity at 100 Hz, 3 9rms 1019 mV/g

Linear Range ...................... .. 10 g
Angular Range ...................... .- 18.000 rad/sz
Mounted Resonant Freauency (nom.) . 8 kHz
Transverse Sensitivity max ....... 2%
Bias Voltage ...................... 11 ±5 VDC
Time Constant (nom.) ............... 1.0

All measurements at 21 0 C

g = 9.807 m/s 2

NIST TRACEABILITY

This accelerometer was calibrated using a back to back comparison technique
against a Kistler Working Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-STD-45662A.

eWorking Standard Reference StandardLinear Acceleration:
Accelerometer Model 809KI12 SN C51785 Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Model 5020 SN C4870
MIST Test Report Number: 822/250337
Angular Acceleration:
Accelerometers Model 8602AS00fM Model 808KI SN 1263

SN C36072/SN C36073
Charge Amplifiers Model 504E10 Model 561T SN 251

SN C4797/SN C4623
Summing Amplifier Model 5217 SN 186396

OCT 0 8 193
By:_ate 10-04-199Z;

Mark Thomas -
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Calibration Certificate

TAPTM

TRANSLATIONAL ANGULAR PIEZOBEAM

SYSTEM MODEL 8832

Accelerometer Model 8696 .............................. SN C58082
Coupler Model 5130 .................................... SN C33393

Angular Sensitivity at 250 Hz, 130 rad/s' 0.485 mV/rad/sl
Linear Sensitivity at 100 Hz, 3grms 1014 mV/g

Linear Range ......................... ±10 g
Angular Range ..................... ±18,000 rad/s 2

Mounted Resonant Frequency (nom,) . 8 kHz
Transverse Sensitivity max ......... 2%
Bias Voltage ...................... 11 ±3 VDC
Time Constant (nom.) ............... 1.0 s

All measurements at 21 0 C
g = 9.807 m/s 2

NIST TRACEABILITY

This accelerometer was calibrated using a back to back comparison technique
against a Kistler Working Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MTL-STD-45662A.

Working Standard Reference Standard
Linear Acceleration:
Accelerometer Model 809K112 SN 151785 Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Model 5020 SN C4870
NIST Test Report Number: 822/250337
Angular Acceleration:
Accelerometers Model 8602A500MI Model 808KI SN 1263

SN C36072/SN C36073
Charge Amplifiers Model 504E10 Model 561T SN 251

SN C4797/SN C4623
Summing Amplifier Model 5217 SN 186396

SEP -41993
By: ------ Date: 09-24-1993

Mark Thomas
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Calibration Certificate

TAPTM

TRANSLATIONAL ANGULAR PIEZOBEAM
SYSTEM MODEL B832

Accelerometer Model 8696 .............................. SN C58086
Coupler Model 5130 .................................... SN C33406

Angular Sensitivity at 250 Hz, 130 rad/s' 0.483 mY/rad/sl
Linear Sensitivity at 100 Hz, 3 grms 1024 mV/g

Linear Range ........................ ±O g
Angular Range ....................... ±18,000 rad/s 2

Mounted Resonant Frequency (nom.) . 8 kHz
Transverse Sensitivity max . ....... 2%
Bias Voltage ...................... 11 ±3 VDC
Time Constant (nom.) ............... 1.0 s

All measurements at 210C
g = 9.807 m/sZ

NIST TRACEABILITY

This accelerometer was calibrated using a back to back comparison technique
against a Kistler Working Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-STD-45662A.

Working Standard Reference Standard
Linear Acceleration:
Accelerometer Model 809KI12 SN C51785 Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Model 5020 SN C4870
NIST Test Report Number: 822/250337
Angular Acceleration:
Accelerometers Model 8602A500M1 Model 808KI SN 1263

SN C360TZ/SN C36073
Charge Amplifiers Model 504E10 Model 561T SN 251

SN C4797/SN C4623
Summing Amplifier Model 5217 SN 186396 SEP 4 41993

By: ---- Date: 09-24-1993
Mark Thomas
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Calibration Certificate

TAPTM

TRANSLATIONAL ANGULAR PIEZOBEAM

SYSTEM MODEL B832

Accelerometer Model 8696 .............................. SN C59085
Coupler Model 5130 .................................... SN C33394

Angular Sensitivity at 250 Hz, 130 radls' 0.493 mV/rad/si
Linear Sensitivity at 100 Hz, 3grms 1017 mV/g

Linear Range ........................ 10 g
Angular Range ....................... 18,000 rad/s 2

Mounted Resonant Frequency (nom.) . 8 kHz
Transverse Sensitivity max ........ 2%
Bias Voltage ...................... 11 t3 VDC
Time Constant (nom.) .............. 1.0 s

All measurements at 210C
g = 9.807 m/sz

NIST TRACEABILITY

This accelerometer was calibrated using a back to back comparison techniaue
against a Kistler Working Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-STD-45662A.

Working Standard Reference Standard
Linear Acceleration:
Accelerometer Model 809KI12 SN C51785 Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Model 5020 SN C4870
NIST Test Report Number: 822/250337
Angular Acceleration:
Accelerometers Model 8602A500M1 Model 808KI SN 1263

SN C36072/SN C36073
Charge Amplifiers Model 504E10 Model 561T SN 251

SN C4797/SN C4623
Summing Amplifier Model 5217 SN 186396 S LP 24 1993 ,

By:. - - --- - Date: 09-24-1993
Mark Thomas
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Calibration Certificate

TAP T

TRANSLATIONAL ANGULAR PIEZOBEAM

SYSTEM MODEL 8832

Accelerometer Model 8696 .............................. SN C58087
Coupler Model 5130 .................................... SN C34610

Angular Sensitivity at 250 Hz. 130 rad/sZ 0.485 mV/rad/s'
Linear Sensitivity at 100 Hz, 3 Qrms 1020 mV/g

Linear Range ........................ 10 g
Angular Range ..................... ±!6.000 rad/s 2

Mounted Resonant Frequency (nom.) . E kHz
Transverse Sensitivity max ........ 2%
Bias Voltage ........................ 11 ±3 VDC
Time Constant (nom.) .............. 1.0 s

All measurements at 21 0 C
g = 9.807 m/s 2

NIST TRACEABILITY

This accelerometer was calibrated using a back to back comparison technique
against a Kistler Working Standard. The Working Standard is periodically
calibrated against a Kistler Reference Standard System which in turn is
periodically recertified by the National Institute of Standards and
Technology. The calibration of all Kistler acceptance test instrumentation is
in conformance with MIL-STD-45662A.

Working Standard Reference Standard
Linear Acceleration:
Accelerometer Model 809K112 SN C51785 Model 8002K SN C17447
Charge Amplifier Model 5020 SN C31904 Model 5020 SN C4870
NIST Test Report Number: 822/250337
Angular Acceleration:
Accelerometers Model 8602A500M1 Model B09KI SN 1263

SN C36072/SN C36073ý
Charge Amplifiers Model 504E10 Model 561T SN 251

SN C4797/SN C4623
Summing Amplifier Model 52t7 SN 186396

By: ----- ---- Date: 10-04-1993
Mark Thomas
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Setting the determinant of the left hand matrix equal to zero

and solving.

2*(cosh(kL)sin(kL) - sinh(kL)cos(kL)) = 0 (B.5)

Equation (B.5) defines an infinite number of solutions for the

term "kI".

B. Mode Shapes

Combining equations (B.1) thru (B.4), a general

expression of the wave equation for a given mode can be

determined.

i(x) = cosh(kix) + cos(kjx) - a.(sinh(k.x)+sin(k.x)) (B.6a)

cosh (k1 l) -cos (k1 l) (B6b)

sinh(k1 1 )-sin(k1 1 )

TABLE B-2: KL AND ALPHA VALUES

Mode kl Alpha

1 4.730041 0.982502

2 7.853205 1.000777

3 10.995607 0.999966

4 14.137165 1.000001

5 17.278760 1.000000

Numerically solving equation (B.6) and inserting values for x,

the graphed solution will depict the shape of the beam for the

given mode.

Figures B-i thru B-5 display the first five mode shapes

of the experimental beam. The mode shapes were normalized by

using the first normalization method.
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C. Natural Frequencies

Reference [121 provides the mathematical development for

the equation for determining the natural frequencies.

Equation (B.7) is provided without proof.

k '- 2 j ( B . 7 )

with y = p * Cross-Sectional Area

TABLE B-3: CALCULATED NATURAL FREQUENCIES

MODE FREQUENCY (HZ)

First 29.65

Second 81.72

Third 160.20

Fourth 264.38

Fifth 395.61

III. FINITE ELEMENT MODELING

The finite element model divides the beam into multiple

homogenous elements. All the multiple elements of the

structure are then combined to produce the overall structural

model. This structural model is then utilized to calculate

the system response.

118



2.5

2

1.5

.~(1.5

-0.5

- 1.5
M 10 20 30 40 50 60 70

Ikum Length

FIGURE B-1: Beam
First Mode

119



3

2

i -~I

l-

-2

A A
-3

0 10 20 30 40 50 60 70
IMuam Letngth

FIUN 8-2: Beam
Second Mode

120



2.5

2

-1.5
o 10 20 30 401 501 (9) 70

Beam Length

FZGURE B-3 : Beam
Third Mode

121

• abimiRmW



3

2

0 %i

0 10 20 31) 40 511 () 70
Bc;am Length

FZGURC B-4: Beam
Fourth Mode

122



3

2

0 /W
-'"U

-2
0 10 201 30 40 50 (A) 70

Bkeam Length

FZGURE B-5 Beam
Fifth Mode

123



Reference [131 is used as guidance for the finite element

development. Bernoulli-Euler theory considers a beam element

with uniform length (L), mass density (p), elastic modulus

(E), cross-sectional (A), and moment of inertia (1). There

are two degrees of freedom (traverse and angular motion) per

node. Each element has two nodes and therefore a total of

four degrees of freedom. The displacement of the beam can be

described as written in equation (B.8).

4

v(x,t) = i• i(x) Vi(t
i-i( .8)

- shape function

The subscript "i" in equation (B.8) describes the specific

mode shape of the structure.

The shape function must satisfy the following boundary

conditions.

1,r(0) = * 2(0) = O ,(.) = *(L) = 1 (B.9a)

IM0) = 4r,(L) = 4ri(L) = 0 (B.9b)

V2(0) = V2(L) = =i(L) 0 (B.9c)

V,3(0) = 10(0) = 1.;(L) = 0 (B.9d)

q4(0) = I4(0) = f4(L) = 0 (B.9e)

Each element can be assumed to be loaded only at its ends.

Thus the equilibrium equation is given by equation (B.1O).

(EIv")"= 0 (B.1O)
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The general solution to equation (B.lO) is a cubic polynomial.

v(x) = C1 +C 2() +C 3 ()2 + C 4(A)3 (B.11)

Inserting the boundary conditions from equation (B.9) into

equation (B.11) results in the following expressions for the

shape functions.

x)2

p1 = 1 - 3(_) + 2() (B.12a)
L L

T2 x 2L(-) + L(A) (B.12b)
L L

P3 = 3( )2 - 2( (B.12c)
L L

P;4 -L( + L( A)3 (B.12d)
L L

A. Stiffness / Mass Matrices

The Bernoulli-Euler stiffness and mass coefficients for

each element can be described by equation (B.13).

k.j = f I H j dx (B.13a)

m = fL PAI~i~~li dx (B.13b)

1. Basic Element

Combining equations (B.12) and (B.13) will result in the

stiffness and mass matrices for the basic beam element. For

example, to solve for element "1,1" (i=1 and j=1), compute

the second derivative of the first shape equation (equation

(B. 12a)).

_L _ ( A ) (B .14)
=L 2 LL
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Inserting equations (B.12) and (B.14) into equation (B.13)

will result in a mass and stiffness expression for the "1,1"

element.

ki - 36 E 1 L _ 4(-•) + 4 (-)2 dx (B.15a)
L 4J L L

L x) 2  j( 3 E 5 j)6 dx (
n = pAL 1 - 6(-) + 4( - 12(L) + 4( (B.15b)

The elemental stiffness and mass matrices can be

developed by solving for each coefficient. The final results,

which are provided by reference [13], are as follows.

12 6L -12 6L

k = EX 6L 4L 2 -6L 2L2

L3 12 -6L 12 -6L2I

6L 2L2 -6L 4L2

156 22L 54 -13L1
S AL 122L 4L2 13L -3L2(.

54 13L 156 -22L (B.17)

II-13L -3L 2 -22L 4L211

Equations (B.16) and (B.17) were used to develop the finite

element model for the beam used in the experiment. The number

of elements chosen are divisible by four. This will ensure

that the clements are sized equally and that the load cell and

accelerometers would always be located on an elemental

boundary.
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2. other Model Considerations

The basic finite element model considers a beam to be 60

inches long, neglects the effects due to the weight from the

accelerometers and the load cell, and the weight loss from the

drilled and tapped connection points on the beam. The actual

beam is 60.625 inches long. The added lergth allows the

entire surface of the accelerometers to be mounted at both

ends. The extra 0.3125 inches on each end is considered a

"lumped mass" at the end coordinates.

The moment of inertia due to the lumped mass was added on

to the appropriate elements of the mass matrix. Each

accelerometer weighs 9.1 grams and remained at the same

location throughout the experiment. The accelerometers were

also considered as lumped masses at the appropriate

coordinates. The load cell changed location depending on the

excitation coordinate, thus to simplify the calculations the

load cell mass was neglected. The weight loss due to the

drilled connection points for the load cell was also

considered insignificant and thus ignored in the final model.

B. Number of Elements

The decision as to the number of elements for the finite

element model must be considered somewhat carefully. Table B-3

lists the natural frequencies for a given number of model

elements.
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The natural frequencies converge to a limiting value as

the number of elements are increased. Figures B-6 and B-7

plot the frequency versus the number of elements for the

fourth and fifth modes. Both plots show the convergence to a

single frequency with the increase in the number of elements.

TABLE B-4: FREQUENCY (HZ) VS. BEAM ELEMENTS

# OF First Second Third Fourth Fifth

ELEMENT Mode Mode Mode Mode Mode

4 29.10 80.00 158.47 289.49 451.86

8 29.07 79.97 157.44 260.64 391.63

12 29.07 79.96 157.20 259.66 388.71

16 29.07 79.96 157.15 259.46 388.09

20 29.07 79.96 157.14 259.41 387.91

24 29.07 79.96 157.13 259.39 387.85

28 29.07 79.96 157.13 259.38 387.81

As the number of elements are increased, the finite

element model accuracy increases. The disadvantage is that as

the number of elements increase, so does the computing time.

In the experimental calculations, the 24 beam element model

was considered to provide sufficient accuracy.

IV. MODEL ACCURACY

The accuracy of the various models can be compared to the

observed response from the experiment. The finite element

model will always be assumed to have 24 beam elements.
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A. Natural Frequencies

The natural frequencies obtained from the exact solution

and the finite element model were compared with the observed

natural frequencies from the experiment. Tables B-5 and B-6

summarize the results of the natural frequency comparison.

TABLE B-5: EXACT SOLUiT VS. OBSERVED DATA

Modes First Second Third Fourth Fifth

Observe 29.90 81.20 155.90 258.30 387.80

Exact 29.65 81.72 160.20 264.38 395.61

%Error 0.84 0.64 2.76 2.35 2.01

TABLE B-6: FINITE ELEMENT VS. OBSERVED DATA

Modes First Second Third Fourth Fifth

Observe 29.90 81.20 155.90 258.30 387.80

Model 29.07 79.96 157.13 259.39 387.85

% Error 2.76 1.53 0.79 0.42 0.01

As shown in Tables B-5 and B-6 both the exact solution

and the finite element model results correspc-ided with the

observed results from the experiments.

B. Frequency Response Function (FRF)

Frequency response curves from the finite element model

were compared with the frequency response curves from the

experiment.
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Figure B-8 is a plot of the "1,1" element of the finite

element model and experimental FRF curves. The close

proximity of the two curves indicate that the finite element

model closely approximates the experimental structure. Figure

B-9 is the same plot as Figure B-8 with the exception of using

a four element (vice 24 element) model. As expected, the four

element model is not as good an approximation as the 24

element model. Figure B-10 is also the same as Figure B-8

with the exception that damping was added to the finite

element model. The damping decreased the peak values

associated with the natural frequencies of the finite element

FRF curve.

V. UNIT ANALYSIS

The units of the FRF matrix from the finite element model

are not equivalent to the units of the FRF matrix from the HP

3562A. Figure B-11 is a block diagram of the unit conversion

associated with the translational elements of the FRF matrix.

This conversion is required for comparisons and calculations

involving finite element models and experimental test data.

The rotational elements of the FRF matrices undergo the same

conversion with the addition of dividing the experimental FRF

by the gain factor associated with the accelerometer power

supply.

132



-21

-- -- --- -- - ......-.....

----- .... ... .. .. ..... .. .... . ..

-1 ---- .- -----------

-- ---1 1-- --- -

0 50 100 150 200 250 300 350 400 450
Frequency (hz)

FIGUREDB-8: H1(9
24 Elements

133



-2

-- --- ---A. ...... .. ... .. ... ..........--- - --- -- --- -- -- ----- -- -- -- ---

5.. .. ..........----------
-4 I f' ------ ---- ---- ---- --- - -- - --

S 7 g. . . . .. ........ .............................

..... . ........I, :.-- .------------- ...... .. ...........

- 7l - ---- --- -- ------ -----

0 50 100 150 200 250 300 350 400 450
Frequency (hz)

FIGURE B-9: Hj 1(f2)
- 4 Elements

134



-3

-5

LV
-4 1 .... . .. ............

1.!
-6 L .. . . . . . . . ... ........ ................. -. . ................... .................. ... . ................ _

-7 --- -- -- -- : . . . . . .•. . . . . .. . .% . . . ". . . . .•< . . . ....... ? ..... ',. ..................... .......... ,- -.... ........... .--- i-

..................... .................. ..........

-9-
-8 -------- . .. .. . .. .. . r . . . . . . . . . . . . . . . . . . . . .'............ 7 ----------. ... -- -- .......... . . . . . . . .

0 50 100 150 200 250 300 350 400 450
Frequency (hz)

FZGURE B-10: H11 (-Q)
24 Elements

Damped Model

135



DivdebyFrequency Squared

FINTE LEMNTMODEL

FiGURC B-1It Unit
Analysis - Translational

Coordinates

136



APPENDIX C

COMPUTER CODE

BMNODEL.M

Calculates the the global mass and stiffness
matrices.

The beam dimensions must be adjusted in the
program as appropriate. The beam is also
considered homogeneous throughout its entire
length.

This program also includes addition of an extra
0.3125 inches of beam as a "lumped mass" at each
end, and the weight due to the accelerometers.

Inputs:
Number of beam elements (input prior to program)
Ensure the number of elements is divisible by 4
This will ensure that the accelerometers are
located at a node.

Beam: Length, Width, Depth, Modulus, Density

Outputs:
Mass and Stiffness Matrices

if rem(n,4) -= 0,
error('# of elements must be divisible by four')
break

end

General Beam Specifications:

tl = 60; % Beam length - total (inches)
w = 1.5656; % Beam width (inches)
d = 0.5339; % Beam depth (inches)
E = 28e+06; % Modulus of Elasticity (psi)
D = 0.284/386.04; % Density (lbf/in-3)
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nc = (n*2)+2; % Number of coordinates
e1 = ti/n; % Beam Element length (inches)
A = w*d; % Cross Sectional Area (in-2)
I = (w*d-3)/12; % Cross Sectional Inertia (in-3)

Develope Elemental Mass and Stiffness Matrices

k =[;%Zero matrix for multiple runs
m
kea = (I/el-3) * (12 6*el; 6*el 4*e12J1;
keb = (I/el-3) * [-12 6*el; -6*el 2*el-2J;
kec = (I/el-3) * [-12 -6*el; 6*el 2*el-2J;
ked = (I/el-3) * [ 12 -6*el; -6*el 4*eV-2J;
mea = (Ael/420) * [156 22*el; 22*el 4*el-2];
meb = (Ael/420) * [ 54 -13*ei; 13*el -3*el-2J;
mec = (A*el/420) * [ 54 13*ei; -13*el -3*el-2J;
med = (A*el/420) * [156 -22*ei; -22*el 4*el-2J;

Develope Global Mass and Stiffness Matrices

k =. zeros(nc);
m = zeros(nc);
for p = 1:n,

a = 2*p;
k(a-1:a,a-1:a) = k(a-l:a,a-1:a) + kea*E;
k(a-l:a,a+l:a+2) = k(a-1:a,a+l:a+2) + keb*E;
k(a+l:a+2,a-l:a) = k(a+1:a+2,a-1:a) + kec*E;
k(a+1:a+2,a+l:a+2) = k(a+1:a+2,a+l:a+2) + ked*E;
m(a-l:a,a-l:a) = M(a-1:a,a-1:a) + mea*D;
m(a-l:a,a+1:a+2) = m(a-1:a,a+1:a+2) + meb*D;
m(a+1:a+2,a-1:a) = m(a+1:a+2,a-1:a) + mec*D;
m(a+1:a+2,a+l:a+2) = m(a+1:a+2,a+l:a+2) + med*D;

end

Addition of lumped masses.

Lumped masses - accelerometers (9.1 grins)

accmass 0 .0091/(0.4536*3B6.04); %0.4536 kg/ibm
i =1:1:4;

node(i) =(i*(n/4)) + 1;
crd(i) =(2*node(i)) - 1;
m(1,1) =m(1,1) + accinass;
m(crd(i),crd(i)) = m(crd(i),crd(i)) + accinass;
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Lumped masses - End overhang

ovrhng = 2.5/B; %inches on each end
ohngmass = D*w*d*ovrhng;
m(1,1) = m(1,1) + ohngmass;
m(crd(4),crd(4)) = m(crd(4),crd(4)) + ohngmass;

%inertia effect on rotation

inermass = (ohngmass/12)*(d-2);
m(2,2) = M(2,2) + inermass;
m(crd(4)+l,crd(4)+1) = m(crd(4)+1,crd(4)+l) + inermass;
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BMERR. M

Calculates the stiffness and mass matrices for
a finite element modeled beam that is
heterogeneous.

The only non-homogeneous variables compensated:
Modulus: Stiffness
Density: Mass

Inputs:
Number of beam elements (input prior to program)
Ensure number of elements is divisible by 4
This ensures that the accelerometers are located
at a node.
Beam: Length , Width, Depth
Modulus and Density including the beam elements
with the appropriate Modulus and density values.

Outputs:
Mass and Stiffness Matrices

if rem(n,4) -= 0,
error('# of elements must be divisible by four')
break

end

General Beam Specifications:

nc - (n*2)+2; % Number of coordinates
tl = 60; % Beam length - total (inches)
el = tl/n; % Beam Element length (inches)
w = 1.5656; % Beam width (inches)
d = 0.5339; % Beam depth (inches)
A = w*d; % Cross Sectional Area (in-2)
I = (w*d-3)/12; % Cross Sectional Inertia (in-3)

Type of error mass(density) or stiffness(modulus)
Non - uniform Beam Modulus

for x=l:n, % Length of E vector = # of elements
if x < 6,

E(x) = 28e+06;
elseif x < 13,

E(x) = 28e+06;
else

E(x) = 28e+06;
end

end
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% Non - uniform Beam Density

for x =1:n,
if x < 12,
D(x) = 0.284/386.04;

elseif x < 19,
D(x) = 0.250/386.04;

else
D(x) = 0.284/386.04;

end
end

Develope Elemental Mass and Stiffness Matrices

k1 = U;%Zero matrix for multiple runs

ml = 1
kea = (I/elV3) * [ 12 6*el; 6*el 4*el-2];
keb = (I/el-3) * [-12 6*el; -6*el 2*el-2];
kec = (I/el23) * [-12 -6*el; 6*el 2*el-22;
ked = (I/el-3) * [ 12 -6*el; -6*el 4*e12J1;
mea = (Ael/420) * (156 22*el; 22*el 4*91-2];
meb = (Ael/420) * [54 .-13*el; 13*el -3*el^2J;
mec = (Ael/420) * [54 13*el; -13*el -3*el-2'j;
med = (Ael/420) * (156 -22*el; -22*el 4*e12J1;

Develope Global Mass and Stiffness Matrices

k1 = zeros(nc);
ml = zeros(nc);
for p =1:n,

a =2*p;
kl(a-1:a,a-1:a) = kl(a-l:a,a-l:a) + kea*E(p);
kl(a-1:a,a+1:a+2) = icl(a-1:a,a+1:a+2) + keb*E(p);
kl(a+1:a+2,a-1:a) = kl(a+1:a+2,a-1:a) + kec*E(p);
kl(a+1:a+2,a+1:a+2) = kl(a+l:a+2,a+1:a+2) + ked*E(p);
ml(a-l:a,a-1:a) = ml(a-1:a,a-1:a) + mea*D(p);
ml(a-l:a,a+l:a+2) = ml(a-1:a,a+l:a+2) + meb*D(p);
ml(a+1:a+2,a-1:a) = ml(a+1:a+2,a-l:a) + mec*D(p);
ml(a+l:a+2,a+1:a+2) = ml(a+1:a+2,a+1:a+2) + med*D(p);

end
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Addition of lumped masses.

Lumped masses - accelerometers (9.1 grins)

accmass =0.0091/(0.4536*386.04); % 0.4536 kg/ibm
i 1:1:4;
node(i) =(j*(n/4)) + 1;
crd(i) =(2*node(i)) - 1;
m1(1,1) =m1(1,I) + accmass;
ml(crd(i),crd(i)) = ml(crd(i),crd(i)) + accmass;

Lumped masses - End overhang

ovrhng = 2.5/8; % inches on each end
ohngmass = D(1)*w*d*ovrhng;
31(1,1) =m1(1,1) + ohngmass;
ml(crd(4),crd(4)) = ml(crd(4),crd(4)) + ohngmass;

% inertia effect on rotation
inermass =(ohnguaass/12)*(d-2);
ml(2,2) =ml(2,2) + inermass;
iul(crd(4)+l,crd(4)+l) = ml(crd(4)+l,crd(4)+l) + inermass;
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TSTMDL.M

Purpose of this program is to plot the FRF of a %
baseline test model (BMMODEL.M) versus a model with a

known error installed (BMERR.M).

Inputs:
# of Beam Elements
Note: BMERR.M must be adjusted as appropriate for
changes in elements or installed errors prior to
running this program.
Start Frequency
Frequency Increment
End Frequency
Response and Excitation Coordinates. These values
change with the change in the # of beam elements

Outputs:
FRF of test model versus the model with the
installed error.

n = 24; % Number of beam elements
fl = 20; % Start frequency (hz)
inc = 0.125; % Incremental frequency (hz)
f2 = 420; % End frequency (hz)
row = 1; % Model Response Coordinate
col = 1; % Model Excitation Coordinate

bmmodel % Test Model
bmerr % Model with installed error

Calculate the FRF

i = 1;
for w = fl:inc:f2,

wl = 2*pi*w; % Converting hz to rad / sec
z = k - wl2*m;
z1 = k1- w12*ml;
h = inv (z) / 386.04; % Scale Corrections
hl = inv (zl) / 386.04;

he(i) = loglO(h(row,col)); % Logarithmic Scale
hel(i) = loglO(hl(row,col));

i = i+1;
end
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Plot the results

w = fl:inc:f2;
plot(w,he,'- -',w,hel,'g')
xlabel( 'Frequency (hz)')
ylabel('in/lbf (log of)')
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P. EXTSIN.M

P. Purpose of this program is to perform a matrix %
extraction of the computer simulation models.

P. Matrix Reduction consists of extraction of the %
translational excitation and response coordinates.

P. Localization Matrix will be a 5X5 matrix

P. Inputs:
P. Stiffness and Mass Matrices from BMMODEL.M and BMERR.M
P. Number of beam elements
P. Three Frequencies (low,medium,high)
P. Two error coordinates

P. Outputs:
P. Localization Matrix at different frequencies
P. Localization Matrix (component) vs frequency.

n = 24; % Number of Elements
fl = 20; % Start Frequency (hz)
f2 = 420; % End Frequency (hz)
inc = 0.125; % Incremental Frequency (hz)
wiow = 35; % Low Frequency (hz)
wmed = 150; % Medium Frequency (hz)
whigh = 350; % High Frequency (hz)
cl = 3; % Left error coordinate
c2 = 4; % Right error coordinate

bmerr % Flawed model (k,m matrices)
bmmodel % Ideal model (k,m matrices)
aset = [1:n/2:(2*n)+1]; % Retained Coordinates

P Localization Matrix at a given frequency

wfix = [wlow,wmedwhigh];
wfixl = wfix*pi*2; % Convert to rads per second
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for i = 1:3,
z = (k-wE ix(i)-2*m); % Develope impedance matrices
z1 = (kl-wfix(i)-2*f1);
h = inv(z); % Frequency Response matrices
hl = inv(zl);

h = h(aset,aset)1386.04; %Matrix Extraction
hl = hl(aset~aset)/386.04;
z1 = inv(hl);

loc = zl*(h1-h)*zl; % Localization Matrix

if i==1,
blow = loc;

elseif i==2,
lined = bc;

else
Thigh = bc;

end
end

Localization Matrix versus Frequency

i =1
for w = fl:inc:f2;

W1i W*pi*2;
Z = k-wla2*m;
z1 = kl-wl12*ml;
h = inv(z)/386.04;
hi inv(zl)/3B6.04;
h = h(aset,aset);
hi = hl(aset,aset);
z1 = inv(hl);
loc = zl*(hl-h)*zl;
lab(i) = loc(ci,ci); % Error component of L
lba(i) = loc(c2,c2); % Error component of L

i =i+i;
end
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4 XIRSSIM.M

%4 Purpose of this program is to perform a matrix IRS
%4 Reduction of the computer simulation models.
%4 Localization Matrix will be a 525 matrix

'4 Inputs:
'4 Stiffness and Mass Matrices from BMMODEL.M and BMERR.M
'4 Number of beam elements
'4 Three Frequencies (low,medium,high)
%4 Two error coordinates

'4 Outputs:
'4 Localization Matrix at different frequencies
%4 Localization Matrix (component) vs frequency.

n = 24; % Number of Elements
fl = 20; % Start Frequency (hz)
f2 = 420; % End Frequency (hz)
inc = 0.125; % Incremental Frequency (hz)
wlow = 35; % Low Frequency (hz)
wmed = 150; % Medium Frequency (hz)
whigh = 350; % High Frequency (hz)
cl = 2; % Left error coordinate
c2 = 3; % Right error coordinate

bmerr % Flawed model (k,m matrices)
bmmodel % Ideal model (k,m matrices)
aset = [1:n/2:(2*n)+1]; % Retained Coordinates
al = aset(1,2); % Omitted Coordinates
a2 = aset(1,3);
a3 = aset(1,4);
a4 = aset(1,5);
oset = [2:al-1,al+1:a2-1,a2+1:a3-1,a3+1:a4-1,n*2+2];
b = length(aset);
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IRS Reduction of the Error Model
Partition stiffness and Mass Matrices

klaa = kl(aset,aset);
kloa = kl(oset,aset);
klao = kl(aset,oset);
kloo = kl(oset,oset);
mlaa = ml(aset,aset);
mloa = uil(oset,aset);
mlao = ml(aset,oset);
mloo = ml(oset,oset);

Transformation Matrix

klool = inv Wkoo);
t1 = klool*mloa - klool*uhboo*klool*kloa;
T1 = [eye(b);tl];

Reduced Stiffness and Mass Matrices

kibar = T1'*ki*Tl;

mibar = Tl'*ml*Tl;

Localization Matrix at a given frequency

wf ix = [vlow,wned,whighJ;
wfixl = wfix*pi*2; %Convert to rads per second

for i = 1:3,
z = k - wfixl(i)-2*m;
z1 = kibar - wfixl(i)-2*mlbar;
h = inv(z);
h = h(aset,aset)I386.04;
hi = inv(zi)/386.04;
z1 = inv(hl);
loc = zl*(hl-h)*zl;
if i==1,

llow = boc;
elseif i==2,

limed = bc;
else

Thigh = bc;
end

end
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Localization Matrix versus Frequency

i =1
for w = fl:inc:f2;

wi = w*pi*2;
z = k - w1-2*m;
z1 = kibar - wl-2*mlbar;
hi = inv(z);
h = h(aset,aset)/386.04;
hl = inv(zl)1386.04;
zI. = inv(hi);
loc = zi*(hi-h)*zl;
lab(i) = loc(ci,ci); % Error Component of Llba(i) = loc(c2,c2); % Error Component of L

i = +1;
end
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SEXTDATA.M

SPurpose : To perform a matrix extraction of a beam finite
% element model and determine the localization
% matrix by comparing with experimental data.

% Inputs:
% Input finite element model (BMERR.M)
% Number of beam elements
% Test data (c:\matlab\beamdata directory)
% Three frequencies (low,med,high)
% Start / End frequencies

% Outputs:
% Localization Matrix at different frequencies
% Localization Matrix (component) vs frequency

n = 24; % Number of beam elements
fl = 20; % Start frequency (hz)
f2 = 420; % End frequency (hz)
inc = 0.125; % Frequency increment (hz)
wlow = 35; % Low frequency (hz)
wmed = 150; % Medium frequency (hz)
whigh = 350; % High frequency (hz)

bmerr % Flawed Model (k,m matrices)
aset = [1:n/2:(2*n)+1]; % Retained coordinates

% Load FRF experimental data and arrange (3201x50 matrix)

load c:\matlab\beamdata\hea.mat;
load c:\matlab\beamdata\heb.mat;
load c:\matlab\beamdata\hec.mat;
load c:\matlab\beamdata\hed.mat;

hebar = [hea(1:800,:); heb(1:800,:)];
hebar = [hebar; hec(1:800,:); hed(1:801,:)];

clear hea heb hec hed % Reduce Memory usage
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Localization Matrix at a given frequency

wfix = [wlow,wmed,whigh];
wfixl = wfix*pi*2; % Convert to radians/sec

n = (8 * (wfix - 20)) +1; % Counter to access hedata

for i = 1:3, % Analytical FRF Matrix
za = (kl-wfixl(i)-2*ml);
ha = inv(za);
ha = ha(aset,aset)/386.04; % Extraction Reduction
za = inv(ha);
hx = datfreq(n(i),hebar); % Experimental FRF Matrix
hx = hx(1:2:9,:)/(wfixl(i)-2);

1Oc = za*(ha-hx)*za; % Localization Matrix

if i == 1,
blow =loc;

elseif i == 2,
lImed = loc;

else
lhigh = loc;

end
end

Localization Matrix Versus Frequency

cntr =1;
for w = fl:inc:f2,

wl = w*pi*2;
za = k1-w12*m1;
ha = inv(za);
ha = ha(aset,aset)/386.04;
za = inv(ha);

n = (8 * (w - 20)) +1;
hx = datfreq(n,hebar);
hx = hx(1:2:9,:)/(w12);
loc = za*(ha-hx)*za;
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l11(cntr) = loc(1,1);
122(cntr) = loc(2,2);
133(cntr) = loc(3,3);

Impedance Error Calculation

haext = inv(ha);
hxext = inv(haext*(ha-hx)*haext);
dzext = inv(hxext - ha);
dzl(cntr) = dzext(l,l);
dz2(cntr) = dzext(2,2);
dz3(cntr) = dzext(3,3);

cntr = cntr+1;
end
w = fl:inc:f2;
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IRSDATA.M

Purpose:
To perform a IRS reduction of a beam finite
element model and determine the localization
matrix by comparing with experimental data.

Inputs:
Input finite element model (BMERR.M)
Number of beam elements
Test data (c:\matlab\beamdata directory)
Three frequencies (low,medhigh)
Start / End frequencies

Outputs:
Localization Matrix at different frequencies
Localization Matrix (component) vs frequency

n = 24; % Number of beam elements
fl = 20; % Start frequency (hz)
f2 = 420; % End frequency (hz)
inc = 0.125; % Frequency increment (hz)
wlow = 35; % Low frequency (hz)
wmed = 150; % Medium frequency (hz)
whigh = 350; % High frequency (hz)

bmerr % Flawed Model (k,m matrices)
aset = [1:n/2:(2*n)+1J; % Retained coordinates

cl = aset(1,2);
c2 = aset(1,3); % omitted coordinates
c3 = aset(1,4);
c4 = aset(1,5);
oset=[2:cl-1,cl+1:c2-1,c2+1:c3-1,c3+1:c4-1,n*2+2];
b = length(aseti;

Partition model k & m matrices

kaa = k%(asetaset); maa = ml(asetaset);
koa = kl(oset,aset); moa = ml(oset,aset);
kao = kl(aset,oset); mao = ml(aset,oset);
koo = kl(oset,oset); moo = ml(oset,oset);
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Transformation Matrix

kool = inv(koo);
t = kool*moa-kool*moo*kool*koa;
T = [eye(b);t];

kbar = %* k1 * % Reduced k matrix
mbar = T'* ml * T; % Reduced m matrix

Load FRF experimental data and arrange (3201x50 matrix)

load c:\matlab\beamdata\hea.mat;
load c:\matlab\beamdata\heb.mat;
load c:\matlab\beamdata\hec.mat;
load c:\matlab\beamdata\hed.mat;

hebar = [hea(l:800,:); heb(l:800,:)];
hebar = [heoar; hec(l:800,:); hed(l:801,:)];

clear hea heb hec hed % Reduce Memory usage

Localization Matrix at a given frequency

wfix = [wlow,wmed,whigh];

wfixl = wfix*pi*2; % Convert to radians/sec

Counter to access he data

n = (8 * (wfix - 20)) + 1;

for i = 1:3, % Analytical FRF Matrix
za = (kbar-wfixl(i)-2*mbar);
ha = inv(za)/386.04;
hx = datfreq(n(i),hebar); % Experimental FRF Matrix

hx = hx(l:2:9,:)/(wfixl(i)-2);

loc = za*(ha-hx)*za; % Localization Matrix

if i == 1,
flow = loc;

elseif i == 2,
imed =loc;

else
lhigh = loc;

end
end
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Localization Matrix Versus Frequency

cntr =1;
for w = fl:inc:f2,

wl = w*pi*2;
za = kbar-wl-2*mbar;
ha = inv(za)/386.04;

n = (8 * (w - 20)) + 1;
hx = datfreq(n,hebar);
hx = hx(1:2:9,:)/(wl'2);
loc = za*(ha-hx)*za;

l11(cntr) = loc(1,1);
122(cntr) = loc(2,2);
133(cntr) = loc(3,3);

Impedance Error Calculation

haext = inv(ha);
hxext = inv(haext*(ha-hx)*haext);
dzext = inv(hxext - ha);
dzi(cntr) = dzext(1,1);
dz2(cntr) = dzext(2,2);
dz3(cntr) = dzext(3,3);

cntr = cratr+1;
end
w = f1:inc:f2;
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DATFREQ .1

function lix = datfreq (n,hebar)

Input:
Frequency (20-420 hz)
FRF experimental data base (3201x50 matrix)

Output:
Experimental FRF matrix for the desired frequency

lix = (hebar(n,1:5) ;hebar(n,6:10) ;hebar(n,11:15)];
lix = [hx;hebar(n,16:20);hebar(n,21:25)J;
lix = [hx;hebar(n,26:30);hebar(n,31:35)J;
lix = (hx;hebar(n,36:40);hebar(n,41:45)];
lix = [lix;hebar(n,46:50)J;
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HEBUILD.M

Purpose:
Build a matrix from experimental data

Input:
Start frequency (20+n*100) hz n=[1,2,3]

% Note: Letter code in this program must be
% adjusted in accordance with the file coding
% End frequency (120+n*100) hz n=[1,2,3]
% Data Files: - files must be in *.mat format
% file location c:\matlab\beamdata directory

% Output:
% *.mat file: - size 801x50 matrix
% file name = he#.mat #:letter code

clear
i = 20; % Start frequency
j = 120; % End frequency

a = 1; % Align frequency with vector

b = 801;

% Establish root code based on frequency range

if i == 20,
root = 'a'; % a: 20 - 120 hz

elseif i == 120,
root = 'b'; % b: 120 - 220 hz

elseif i == 220,
root = 'c'; % c: 120 - 220 hz

else,
root = 'd'; % d: 320 - 420 hz

end

for d2 = 1:10,
for dl = 1:2:9,

flname = ['h',num2str(d2),'_',num2str(dl),root];
eval(['load c:\matlab\beamdata\',flname,'.mat']);
eval(['he',root,'=[he',root,',o2il];']);

end
end

eval(['save c:\matlab\beamdata\he',root,'.mat']);
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FRFYTCH. N

Purpose:
Compare modeled FRF response with tabulated
FRF response from the beam experiment.

Modeled FRF:
Calculated using k,m from BMMODEL.M
Must insert a value for n (# elements)

If n is other than 4, then the location of
the h matrix must be considered carefully
to ensure proper comparison.

Tabulated FRF:
Data is received from the .mat files
File location c:\matlab\beamdata
Tabulated frequency range is 20-420 hz
Beam has 5 accelerometers and 4 beam elements

Program will progress thru each file <cntrl c >
terminates the program

n = 24; % # of beam elements
row = 1; % Model response coordinate
col = 1; % Model Excitation coordinate
flnm = 'hl_1'; % measured FRF file of interest
fl = 20; % Start frequency (hz) (min=20hz)
f2 = 420; % End frequency (hz) (max=420hz)
inc = 0.125; % mat file 801 elements-100 hz span

Tabulated FRF

Loading initial *.mat file based on fl

y=[]; ya=[]; yb=[]; yd=[];
if fl < 120,

a = 8*(fix(fl)-20)+((fl-fix(fl))/0.125)+l;
eval(['load c:\matlab\beamdata\' ,flnm, 'a.mat']);
ya = o2il(1:801);
eval(['load c:\matlab\beamdata\' ,flnm, 'b.mat']);
yb = o2i1l(1:801);
eval(['load c:\matlab\beamdata\',flnm, 'c.mat' );
yc = o2i1l(1:801);
eval(['load c:\matlab\beamdata\',flnm,'d.mat']);
yd = o2il(1:801);
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elseif fl < 220,
a = B*(fix(f1)-12O)+((fl-fix(fl))/0.125)+1;
eval(U load c:\matlab\beamdata\ ,flnm, 'b.mat'J);
yb = o21l(1:801);
eval(U load c:\matlab\beamdata\'-,flinm,'c.mat' J);
yc = o21l(1:801); 1
eval([ load c:\matlab\beamdata\' ,flnin, 'd.mat']);
yd = o21l(1:801);

elseif fl < 320,
a = 8*(fix(fl)-22O)+((fl-fix(f1))/0.125)+l;
eval(U load c:\matlab\beamdata\' ,flnm, 'c.matfl);
yc = o21l(1:801);
eval([ load c:\matlab\beamdata\' ,flrnm,'d.mat' J);
yd =o21l(1:801);

else
a =8*(fix(fl)-320)+((fl-fix(fl))/0.125)+l;
eval([ load c:\matlab\beamdata\' ,flrnm,'d.mat' J);
yd = o2il(1:801);

end
Data length based on frequencies

if f2 <= 120,
b = B*(fix(f2)-20)+((f2-fix(f2))/0.125)+1;
y = ya(a:b);

elseif f2 <= 220,
b = 8*(fix(f2)-~120)+((f2-~fix(f2))/0.125)+1;
if fl < 120,

y = [ya(a:801);yb(2:bfl;
else

y = yb(a:b);
end

elseif f2 <1- 320,
b = 8*(fix(f2)-220)+((f2-fix(f2))/0.125)+l;
if fl < 120,

y = [ya(a:801);yb(2:801);yc(2:b)];
elseif fl < 220,

y = [yb(a:801);yc(2:b)];
else
y = yc(a:b);

end
else
b = 8*(fix(f2)-320)+((f2-fix(f2))/0.125)+l;
if fli 120,

y = (ya(a:801) ;yb(2:801);yc(2:8O1);yd(2:b)J;
elseif fli 220,

y = [yb(a:801) ;yc(2:801);xd(2:b)J;
elseif fl < 320

y = [yc(a:801);yd(2:b)];
else

y = yd(a:b);
end

end
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Calculate the model FRF

bmmodel % calculate k and m matrices
i = 1;
if rem(row,2) -= 0,

Translation accelerometer adjust

for w = fl:inc:f2,
W1 = 2*pi*w; % convert hz to rad/sec

z = k - wl2*m;
h = inv(z);
he(i) = h(row,col)/386.04; % unit correction
y (i) = y(i)/(wl12); % unit correction
i i+l;

end
else % Angular accelerometer adjust

for w = fl:inc:f2,
w1 = 2*pi*w;

z = k-wl2*m;
h = inv(z);

he(i) = h(row,col); % 10* due to TAP gain
y(i) = y(i)/(10*(w12)),
i i+1;

end
end

Plot results

Plot coordinate scale
w=fl:inc:f2;
hedb = log(he)/log(10);
ydb = log(y)/log(10);
plot(w,hedb,'- -',w,ydb,'g')
xlabel('Frequency (hz)')
ylabel('in/lbf (log of)')
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DAMP.M

% Damping data of beam experiment.
% Results were obtained by the half power point method

% Format: zetal (first mode)
% zeta2 thru zeta5 (2nd thru 5th modes)

% zeta is a 10x5 matrix
% zeta = z1l z13 z15 z17 z19

z21 z23 z25 z27 z29

% z101 z103 z105 z107 z109

z1 = [.0146 .0127 .0042 .0051 .0035];
z2 = [.0185 .0102 .0042 .0127 .0043];
z3 = [.0167 .0063 .0034 .0169 .0048];
z4 = [.0184 .0081 .0038 .0153 .0043];
z5 = [.0184 .0106 .0038 .0047 .0045];
z6 = [.0167 .0144 .0042 .0059 .0045];
z7 = [.0166 .0147 .0042 .0102 .0060];
z8 = [.0146 .0129 .0055 .0127 .0048];
z9 = [.0146 .0120 .0055 .0047 .0046];
zO = [.0167 .0064 .0042 .0047 .0052];
zetal = [zl;z2;z3;z4;z5;z6;z7;z8;z9;zO];

z1 = (.0016 .0023 .0000 .0018 .0102];
z2 = [.0019 .0023 .0000 .0018 .0102];
z3 = [.0016 .0031 .0000 .0018 .0104];
z4 = (.0016 .0023 .0088 .0016 .0066];
z5 = [.0033 .0000 .0000 .0090 .0063];
z6 = (.0016 •123 .0018 .0019 .0111];
z7 = (.0016 ,23 .0148 .0016 .0105];
z8 = [.0016 -- 8 .0000 .0017 .0113];
z9 = [.0016 .0023 .0047 .0014 .0107];
zO = [.0016 .0020 .0127 .0018 .0092];
zeta2 = [zl;z2;z3;z4;z5;z6;z7;z8;z9;zO];

z1 = (.0032 .0054 .0041 .0039 .0029];
z2 = [.0038 .0054 .0046 .0048 .0030];
z3 = [.0060 .0034 .0044 .0033 .0015];
z4 = (.0035 .0050 .0050 .0047 .0015];
z5 = (.0075 .0048 .0048 .0032 .0021];
z6 = [.0027 .0034 .0039 .0068 .0020];
z7 = [.0076 .0050 .0046 .0023 .0022];
z8 = [.0068 .0050 .0031 .0048 .0028];
z9 = [.0072 .0051 .0046 .0022 .0033];
zO = [.0071 .0050 .0031 .0023 .0028];
zeta3 = [zl;z2;z3;z4;z5 ;z6;z7;z8;z9;zO];
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zi = [.0017 .0017 .0053 .0018 .0023];
z2 = [.0019 .0019 .0044 .0022 .0023];
z3 = [.0021 .0014 .0051 .0011 .0018];
z4 = [.0019 .0021 .0061 .0019 .0017];
z5 = (.0000 .0000 .0000 .0000 .0000);
z6 = [.0017 .0021 .0025 .0018 .00161;
z7 = [.0022 .0017 .0000 .0015 .0019];
z8 = [.0023 .0022 .0000 .0019 .0023];
z9 = (.0023 .0018 .0000 .0015 .0021];
zO = (.0023 .0018 .0000 .0015 .0021];
zeta4 = [zl;z2;z3;z4;z5;z6;z7;zS;z9;zO];

zi = [.0013 .0009 .0010 .0014 .0012];
z2 = [.0013 .0010 .0012 .0007 .0013];
z3 = [.0016 .0010 .0008 .0012 .0017);
z4 = [.0014 .0011 .0009 .0009 .0017];
z5 = [.0016 .0005 .0007 .0011 .0014];
z6 = [.0015 .0009 .0008 .0010 .0016];
z7 = [.0014 .0006 .0008 .0011 .0013];
zB = [.0014 .0009 .0015 .0009 .0011];
z9 = [.0014 .0005 .0009 .0011 .0010];
zO = [.0014 .0007 .0012 .0013 .0011];
zeta5 = [zl;z2;z3;z4;z5;z6;z7;zS;z9;zO];
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% CMATRIX.M

% Purpose:
% Produce a damping matrix from damping data

% Inputs:
% Zeta: DAMP.M
% K,M Matrices: BMERR.M and BMMODEL.M

% Outputs:
% Damping Matrix

Input zeta and determine an average value

damp

% Input data from half power calculations

z(1) = sum(sum(zetal)')/%0; % 1st Mode average valuez(2) = sum(sum(zeta2)')/50; % 2nd Mode average valuez(3) = sum(sum(zeta3)')/50; % 3rd Mode average value
z(4) = sum(sum(zeta4)')/50; % 4th Mode average value
z(5) = sum(sum(zeta5)')/50; % 5th Mode average value

S% Determine eigenvalues and eigenvectors

% Stiffness and Mass matrices are assumed to have been
% previously initialized from a previous statement

(phi,lam] = eig(kl,ml); % Sort in ascending order
[lambda,cntr] = sort(diag(lam));
phi = phi(:,cntr);

Mass normalized the eigenvector

phi = phi/sqrt(phi'*ml*phi);

lambda = lambda(3:7,:); % Keep first five modes
phi = phi(:,3:7);

lamzeta = zeros(5); % develope 2*zeta*omega matrix

for i = 1:5,
lamzeta(i,i) = 2 *z(i)*sqrt(lambda(i));

end

Calculate final damping matrix

c = ml * phi * lamzeta * phi' * ml;
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APPENDIX D

MISSING OSET ANALYSIS

As discovered in Section IV, expected peak values of the

localization matrix and the impedance error associated with

the OSET frequencies, were missing for the inner elements of

the localization and impedance error matrices.

Evaluation of the various models to determine which OSET

frequencies are missing is a good starting point for this

analysis. Tables D-1 thru D-4 will summarize the peak values

of the "1,I", "2,2", and "3,3" elements of the localization

and impedance error matrices using various combinations of

analytical and test models. The summary will also include the

effects of extraction and IRS reduction.

The tables will list the actual peak frequencies. A

dashed line indicates the specific frequency peak is not

expected (and did not occur).
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TABLE D-1: IDEAL VS. EXPERIMENTAL

Analytical System: Ideal Beam Model
Test System: Experimental Data

Extraction Reduction IRS Reduction

L11  L22 L33 L11  L2 2  L3 3

29.90 29.90 29.90 29.90 29.90 29.90

81.20 81.20 81.20 81.20 81.20 81.20

155.90 155.90 155.90 155.90 155.90 155.90

209.92 Missing Missing

244.90 244.90 244.90

258.30 258.30 258.30 258.30 258.30 258.30

327.96 327.96 Missing

387.85 387.85 387.85 387.85 387.85 387.85

Impedance Error Matrix (hz)

Extraction Reduction IRS Reduction
dz 1 1  dz dz dz dz dz22 33 i1 22 33

29.90 29.90 29.90

81.20 81.20 81.20

155.90 155.90 155.90

209.92 Missing Missing

210.25 Missing Missing 210.25 Missing Missing

244.90 244.90 244.90

245.05 245.05 245.05 245.05 245.05 245.05

258.30 258.30 258.30

327.96 327.96 Missing

329.50 329.50 Missing 329.50 329.50 Missing

387.80 387.80 387.80
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TABLE D-2: CASE I VS. IDEAL

Analytical System: Flawed Model (Case I)
Test System: Ideal Beam Model

Extraction Reduction IRS Reduction

LI1 L22 L3 3  Lll L22 L3 3

29.07 29.07 29.07 29.07 29.07 29.07

79.96 79.96 79.96 79.96 79.96 79.96

157.14 157.14 157.14 157.14 157.14 157.14

172.60 172.60 172.60

225.34 225.34 225.34

259.39 259.39 259.39 259.39 259.39 259.39

265.46 265.46 265.46

354.07 354.07 354.07

387.85 387.85 387.85 387.85 387.85 387.85

Impedance Error Matrix (hz)

Extraction Reduction IRS Reduction

dzj, dz 2 2  dz 3 3  dzll dz 2 2  dz 3 3

172.60 172.60 172.60

209.92 Missing Missing 209.92 Missing Missing

225.34 225.34 225.34

244.90 244.90 244.90 244.90 244.90 244.90

265.46 265.46 265.46

327.96 327.96 Missing 327.96 327.96 Missing

354.07 354.07 354.07
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TABLE D-3: CASE I VS. EXPERIMENTAL

Analytical Model: Flawed Model (Case I)
Test System: Experimental Data

Extraction Reduction IRS Reduction
Lll L22 L33 Lll L22 L33

29.90 29.90 29.90 29.90 29.90 29.90

81.20 81.20 81.20 81.20 81.20 81.20

155.9J) 155.90 155.90 155.90 155.90 155.90

172.60 172.60 172.60

225.34 225.34 225.34

258.30 258.30 258.30 258.30 258.30 258.30

265.46 265.46 265.46

354.07 354.07 354.07

387.80 387.80 387.80 387.80 387.80 387.80

Impedance Error (hz)

Extraction Reduction IRS Reduction

dz1 1  dz 2 2  dz 3 3  dz 1 1  dz 2 2  dz 3 3

29.90 29.90 29.90

81.20 81.20 81.20

155.90 155.90 155.90

172.60 172.60 172.60

209.92 Missing Missing 209.92 Missing Missing

225.34 225.34 225.34

244.90 244.90 244.90 244.90 244.90 244.90

265.46 265.46 265.46

327.96 327.96 Missing 327.96 327.96 Missing

354.07 354.07 354.07

387.85 387.85 387.85
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TABLE D-4: CASE I VS. CASE II

Analytical Model: Flawed Model (Case I)
Test System: Flawed Model (Case II)

Extraction Reduction IRS Reduction

F Ll L22 L3 3  Lll L2 2  L33

29.56 29.56 29.56 29.56 29.56 29.56

81.32 81.32 81.32 81.32 81.32 81.32

159.94 159.94 159.94 159.94 159.94 159.94

172.60 172.60 172.60

225.34 225.34 225.34

263.26 263.26 263.26 263.26 263.26 263.26

265.46 265.46 265.46

354.07 354.07 354.07

396.23 396.23 396.23 396.23 396.23 396.23

Impedance Error (hz)

Extraction Reduction IRS Reduction

dzll dz 2 2  dz 3 3  dzll dz 2 2  dz 3 3

172.60 172.60 172.60

213.03 213.03 213.03 213.03 213.03 213.03

225.34 225.34 225.34

246.12 246.12 246.12 246.12 246.12 246.12

265.46 265.46 265.46

333.20 333.20 333.20 333.20 333.20 333.20

354.07 354.07 354.07
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Table D-1 reveals missing OSET frequency peaks associated

with the ideal beam model and the experimental test data.

Table D-2 shows missing OSET frequency peaks associated with

the ideal beam model. Case I flawed beam finite element model

displayed all the expected OSET frequency peaks. The results

of Table D-3 are the same as Table D-2 with the exception that

the experimental test data is used vice the ideal beam model.

Table 1-4 involves a structural identification between the

case I and case II flawed beam finite element models. All

expected eigenvalues appeared in the localization and

impedance error spectra plots.

Further information which is not detailed in this

appendix, is that the "4,4" element plots displayed the same

missing OSET frequency peaks as the "2,2" element, ,.nd the

"5,5" element contained all the expected OSET frequency peaks.

The "5,5" element plot corresponded to the "1,1" element plot.

The overall pattern indicates that some mechanism in the

ideal beam finite element model and the experimental data is

causing the missing OSET frequency peaks.

The next step is to ry to identify the mechanism using

the reduction process. Equation (2.34b) indicates that the

FRF is dependent on the inverse of the OSET partitioned

impedance matrix. Figures D-1 and D-2 plot the inverse of the

OSET partitioned impedance matrix over a frequency range from

20 to 420 hz for the ideal beam and Case II flawed beam finite

element models.
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All the expected OSET frequency peak values appear in

both figures. The next calculation is a plot of the product

of Zoa, Zao, and the inverse of the OSET impedance matrix.

Figures D-3 and D-4 display this product over the same

frequency range of 20 to 420 hz for the ideal beam and case II

flawed beam finite element models.

Figure D-3 displays missing OSET frequency peaks that

correspond to the missing peak values described in Tables D-1

and D-2. Figure D-4 contains all expected OSET frequency

peaks. The "1,1" element does have a frequency peak at 213.03

hz, it is not visible in this particular plot.

The missing OSET frequency peaks correspond to a

mechanism in the ideal beam model. Since the experimental

data closely resembles the ideal beam model, the same

mechanism is impacting both these results. The flawed beam

models do not exhibit the missing OSET frequency peak values.

The final conclusion is that since the product of the

partitioned impedance matrix described above is providing

missing OSET peak frequencies, the effects of a symmetrical

matrix is causing the missing OSET peak values. This

symmetrical matrix would result from a homogeneous beam finite

element model or structure. This conclusion is supported by

the lack of missing OSET peak values displayed in the flawed

finite element models which are heterogeneous.
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